scholarly journals Dynamics of the health status of forest stands and its prediction on research plots in the Šumava Mts.

2012 ◽  
Vol 52 (No. 10) ◽  
pp. 457-473
Author(s):  
S. Vacek ◽  
V. Podrázský ◽  
K. Matějka

The paper summarises the evaluation of the health status dynamics of allochthonous spruce stands in the Modrava Forest District and of natural stands in the Plešný Forest District. Analysis is based on dendroecological reactions of particular tree individuals in the stand texture. The tree damage was evaluated annually (in the period 1997–2005), based especially on defoliation. The most tolerant were the natural and semi-natural, especially mixed forest stands with dominant beech in the Plešný Forest District territory, the least tolerant were the allochthonous secondary spruce stands in the Modrava Forest District area. The damage dynamics was limited by the insect (bark beetle – Ips typographus) pest activity. Ozone damage appeared much more often in 2002, compared to the year 1999. The most damaged species were sycamore and rowan tree.

2012 ◽  
Vol 49 (No. 7) ◽  
pp. 333-347
Author(s):  
S. Vacek ◽  
K. Matějka ◽  
J. Mayová ◽  
V. V Podrázský

The paper summarises an evaluation of the health status dynamics of allochthonous spruce stands in the Modrava Forest District and of natural stands in the Plešný Forest District. Analysis is based on dendroecological reactions of particular tree individuals in the stand structure. The tree damage was evaluated annually (during the period 1997–2002), based especially on defoliation. Natural and semi-natural, especially mixed forest stands with dominant beech in the Plešný Forest District territory were most tolerant, allochthonous secondary spruce stands in the Modrava Forest District area were least tolerant. The damage dynamics was limited by the activity of insect pests (bark beetle – Ips typographus). Damage caused by ozone occurred much more often in 2002 compared to 1999. The most damaged species were sycamore and rowan tree.


2014 ◽  
Vol 56 (2) ◽  
pp. 79-92 ◽  
Author(s):  
Wojciech Grodzki ◽  
Jerzy R. Starzyk ◽  
Mieczysław Kosibowicz

Abstract In 2010-2012, investigations on Ips typographus populations were carried out in Norway spruce stands recently affected by bark beetle outbreak in the Beskid Żywiecki Mts. in Poland. The aim of the study was to test the usefulness of several traits describing I. typographus populations for evaluation of their actual outbreak tendency. Infestation density, sex ratio, gallery length, progeny number and beetle length were used as the traits. Trait variability was analyzed in relation to infested tree mortality in the current year of observation and outbreak tendency defined by the comparison of data on tree mortality in the current year and that in the year before. The highest infestation density was found in the stands representing the highest tree mortality in the current year and in those characterized by decreasing outbreak tendency. The gallery system with 2 maternal galleries dominated. The sex ratio of attacking beetles inclined towards females (63.8%) and remained stable during 3 years of observations; the highest percentage of females was found in locations being in stabilization/latency outbreak phase. The length of maternal galleries was somewhat negatively affected by infestation density and positively correlated with the number of progeny in the gallery. The average beetle length was 4.800 mm (± 0.293), ranging between 3.718 and 5.817 mm and being the highest in the uppermost class of tree mortality recorded in the current year of observation. The shortest beetles were collected in the stands with increasing outbreak tendency, and slightly longer - in the stands with outbreak stable and decreasing tendencies. None of the traits tested can be selected as a direct indicator for prediction of outbreak tendency in I. typographus populations. Possible reasons of variability in the analyzed traits are discussed. The traits indicate that I. typographus in the study area represent very high reproductive potential, thus the risk of repeated outbreak is very high


2015 ◽  
Vol 76 (1) ◽  
pp. 5-17 ◽  
Author(s):  
Wojciech Grodzki ◽  
Mieczysław Kosibowicz

Abstract In 2011-2013, trials on the use of the entomopathogenic fungus Beauveria bassiana against bark beetle (Ips typographus) populations were carried out under open field conditions in Norway spruce stands suffering from an outbreak in the Beskid Żywiecki Mts. in Poland. Modified pheromone traps were deployed to capture and thereafter release fungus-infected bark beetles to the forest environment. Infested spruce trees felled next to the traps remained unaffected by the transmission of the fungus to insect populations. Direct spraying or dusting of lying trap logs and suspended caged rearing bolts did not have any effect on spruce infestation by I. typographus, its reproduction success and development or natural enemies inside the bark. A very small effect on mortality rates of target as well as non-target insects overwintering in the dusted litter was observed. Treated stands, unlike control stands, were indirectly affected by the treatment, evidenced by the reduction of tree mortality due to bark beetle infestation. At present, no recommendations concerning the potential use of the fungus in forest protection can be given. However such an environmentally friendly approach represents a promising future prospect.


2011 ◽  
Vol 72 (1) ◽  
pp. 31-36
Author(s):  
Andrzej Borkowski

Występowanie kornika drukarzaIps typographus(L.) i rytownika pospolitegoPityogenes chalcographus(L.) w drzewostanach świerkowych uszkodzonych przez wiatr w Górach Świętokrzyskich


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 647
Author(s):  
Justyna Anna Nowakowska ◽  
Tom Hsiang ◽  
Paulina Patynek ◽  
Krzysztof Stereńczak ◽  
Ireneusz Olejarski ◽  
...  

A current ongoing unprecedented outbreak of Ips typographus (L.) (Coleoptera, Curculionidae, Scolytinae) in the Białowieża Primeval Forest (BPF) has nearly eliminated Norway spruce (Picea abies L. Karst) as a major forest tree species there, since over 1 million trees have died. In this part of Europe, Norway spruce has grown for hundreds of years, previously accounting for 30% of forest species composition. The aim of this study was to evaluate 47 “Monuments of Nature” of Norway spruce as follows: (i) their current health status in the managed forests of Białowieża Forest District; (ii) possible causes and changes in their health during the last bark beetle outbreak; and (iii) potential losses from the gene pool. Our findings from ground and remote sensing inventories showed that only 12 out of 47 (25%) monumental trees protected by law survived until 2017 in the study area. The rest (75%) of the investigated trees had died. An analysis of meteorological data from Białowieża suggested that the beginning of the I. typographus outbreak in 2012 was associated with diminishing precipitation during growing seasons prior to this time and subsequent increases in annual temperature, coupled with heavy storms in 2017 toppling weakened trees. A comparison of old-growth “Monuments of Nature” spruce in the region (n = 47, average age 225 years) to seven reference spruce stands (n = 281, average age 132 years) revealed a loss of unique genetic features based on frequencies of eleven nuclear microsatellite loci. Although all studied populations had similar genetic background (FST(without NA) = 0.003 and no STRUCTURE clustering), all monumental spruce trees shared the highest parameters such as the mean observed and expected number of alleles per locus (Na = 15.909 and Ne = 7.656, respectively), mean allelic richness (AR(11) = 8.895), mean private alleles (Apriv = 0.909), and mean Shannon diversity index (I = 1.979) in comparison to the younger stands. Our results demonstrate that the loss of the old spruce trees will entail the loss of genetic variability of the Norway spruce population within the exceptionally valuable Białowieża Primeval Forest.


2016 ◽  
Vol 62 (4) ◽  
pp. 216-222
Author(s):  
Hana Vanická ◽  
Karolina Lukášová ◽  
Jaroslav Holuša

Abstract Forest management greatly affects the population density of the European spruce bark beetle, Ips typographus. In this study, a meta-analysis was used to determine whether infection levels of pathogens of I. typographus differ between managed and unmanaged spruce stands. The analysis used data from 10 publications and a total of 61 locations. The results indicated that infection levels of the most common pathogens (ItEPV, Gregarina typographi, and Mattesia schwenkei) are higher in unmanaged than in managed locations. The only exception is the microsporidium Chytridiopsis typographi, which is more common in managed than in unmanaged locations. Our meta-analysis indicates that pathogen levels are generally higher in unmanaged than in managed locations.


2021 ◽  
Vol 13 (23) ◽  
pp. 4953
Author(s):  
Azadeh Abdollahnejad ◽  
Dimitrios Panagiotidis ◽  
Peter Surový ◽  
Roman Modlinger

In the last decade, thousands of hectares of forests have been lost in the Czech Republic, primarily related to European spruce bark beetle (Ips typographus L.), while more than 50% of the remaining Czech forests are in great danger, thus posing severe threats to the resilience, stability, and functionality of those forests. The role of remote sensing in monitoring dynamic structural changes caused by pests is essential to understand and sustainably manage these forests. This study hypothesized a possible correlation between tree health status and multisource time series remote sensing data using different processed layers to predict the potential spread of attack by European spruce bark beetle in healthy trees. For this purpose, we used WorldView-2, Pléiades 1B, and SPOT-6 images for the period of April to September from 2018 to 2020; unmanned aerial vehicle (UAV) imagery data were also collected for use as a reference data source. Our results revealed that spectral resolution is crucial for the early detection of infestation. We observed a significant difference in the reflectance of different health statuses, which can lead to the early detection of infestation as much as two years in advance. More specifically, several bands from two different satellites in 2018 perfectly predicted the health status classes from 2020. This method could be used to evaluate health status classes in the early stage of infestation over large forested areas, which would provide a better understanding of the current situation and information for decision making and planning for the future.


2017 ◽  
Vol 78 (2) ◽  
pp. 113-119 ◽  
Author(s):  
Wojciech Grodzki ◽  
Wojciech Gąsienica Fronek

Abstract At the end of 2013, Norway spruce stands in the area of the Tatra National Park were severely damaged by strong storms especially in the Kościeliska Valley region. In the following spring of 2014, a survey recording the occurrence of the spruce bark beetle Ips typographus (Coleoptera, Curculionidae, Scolytinae) was initiated in order to describe the dynamics of beetle reproduction in relation to protection measures executed in wind-damaged stands. Ten research plots with 20 trees each were established in a socalled active protection zone, where the broken and fallen trees had been processed and removed in 2014, and in a passive protection zone, where no actions were taken, and the dynamics of Norway spruce mortality due to bark beetle infestation including quantitative parameters (infestation density, sex ratio of beetle populations) were examined. The entomological analyses were performed on 25 × 25 cm large bark samples taken from four (active zone) or two (passive zone) tree sections. In the first year of the survey, no infested standing trees were recorded on the plots and the colonisation of fallen and broken trees was very weak. In the second year (2015), infestations appeared in larger numbers on the plots with passive compared to active protection but the infestation density was 0.89 mating chambers per 1 dm2 regardless of the protection status. In the third year (2016), most of the remaining living spruces had been infested with a mean density of 0.82 m.ch. per 1 dm2. In 2015, the proportion of females in the beetle population was 65.8% being higher in the active (68.4%) than the passive (64.0%) protection zone, while in 2016 the proportion was 63.5% and in this case slightly higher in the passive protection zone (63.9% as compared to 63.2%). These results are in accordance with patterns observed in wind-damaged Norway spruce stands of other areas in Poland and Europe and demonstrate the usefulness of forest management procedures in mitigating I. typographus outbreaks.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Alexander Angst ◽  
Regula Rüegg ◽  
Beat Forster

The eight-toothed spruce bark beetle (Ips typographus) is the most serious insect pest in Central European forests. During the past two decades, extreme meteorological events and subsequent beetle infestations have killed millions of cubic meters of standing spruce trees. Not all the infested stands could be cleared in time, and priorities in management had to be set. Natural or man-made buffer zones of about 500 meters in width are frequently defined to separate differently managed stands in Central Europe. While the buffer zones seem to be effective in most of the cases, their impact has not been studied in detail. Beetle densities were therefore assessed in three case studies using pheromone traps along transects, leading from infested stands into spruce-free buffer zones. The results of the trap catches allow an estimation of the buffer zone influence on densities and the dispersal ofIps typographus. Beetle densities were found to decrease rapidly with increasing distance from the infested spruce stands. The trap catches were below high-risk thresholds within a few hundred meters of the infested stands. The decrease in catches was more pronounced in open land and in an urban area than in a broadleaf stand. Designed buffer zones of 500 m width without spruce can therefore very probably help to reduce densities of spreading beetles.


Forests ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 39
Author(s):  
Georgi Georgiev ◽  
Margarita Georgieva ◽  
Stelian Dimitrov ◽  
Martin Iliev ◽  
Vladislav Trenkin ◽  
...  

The Chuprene Reserve was created in 1973 to preserve the natural coniferous forests in the Western Balkan Range in Bulgaria. The first infestations by European spruce bark beetle (Ips typographus) were registered in Norway spruce (Picea abies) stands in the mid-1980s. The aim of this study is to assess the damages caused by I. typographus in the Chuprene Reserve using remote sensing techniques – unmanned aerial vehicle (UAV) images, airborne images, and satellite images of European Space Imaging (EUSI), combined with terrestrial verification. High-resolution images in four bands of the electromagnetic spectrum and in a standard RGB channel were taken in 2017 via a multispectral camera ‘Parrot Sequoia’, integrated with a specialized professional UAV system eBee ‘Flying Wing’. The health status of Norway spruce stands in the reserve was assessed with the normalized difference vegetation index, based on the digital mixing of imagery captured in the red and near infrared range. The dynamic of bark beetle attacks was studied in GIS on the basis of maps generated from photographic surveys, airborne images taken in 2011 and 2015, and satellite images from 2020. In the UAV-captured area (314.0 ha), the size of Norway spruce stands attacked by I. typographus increased from 7.6 ha (2.4%) in 2011 to 44.9 ha (14.3%) in 2020. The satellite images showed that on the entire territory of the Chuprene Reserve (1451.9 ha), I. typographus killed spruce trees on 137.4 ha, which is 9.6% of the total area.


Sign in / Sign up

Export Citation Format

Share Document