scholarly journals Technology for designing innovative processes for creating products and services of a network enterprise using an i4.0 knowledge-based system

2021 ◽  
Vol 15 (4) ◽  
pp. 76-92
Author(s):  
Yury Telnov ◽  
Vasily Kazakov ◽  
Andrey Danilov

The creation of network enterprises based on the digital technologies of the Industrie 4.0 (the 4th Industrial Revolution, i4.0) opens broad opportunities for increasing production flexibility, customer focus and continuous innovation in products and services provided. At the same time, new opportunities necessitate the development of new methods and technologies for designing innovative processes in the context of digital i4.0 platforms, all of which highlights the relevance of the presented research topic. This work aims to define technologies for designing innovative processes to create products and services using i4.0 systems which are based on multi-agent interaction of asset administration shells (AAS), displaying digital twins of product components, and the use of ontological and cognitive methods for forming and justifying design decisions. The work presented here uses the Domain-Driven Design approach, an architectural framework for building i4.0 systems, methods of ontological engineering, quality function deployment (QFD), analysis of the types and consequences of potential inconsistencies (FMEA) and processing of fuzzy sets. The paper proposes principles for identifying bounded contexts of the domain under the design activities for the stages of the life cycle and products’ subsystems (components). For bounded contexts of the domain, it is envisaged to create AAS of i4.0 systems, with the help of which the innovative process is supported and the multi-agent interaction of its participants is carried out. As cognitive tools for making design decisions, we proposed to use services for assessing the importance of the determined quality characteristics of products and minimizing deviations of the proposed solutions from the formed functional and non-functional requirements. The methods of ontological engineering and data modelling allow us to dynamically develop an innovative project and support various versions of the project in the design process. Application of the proposed technology for designing innovative processes to create products and services at network enterprises using i4.0 systems will improve the quality of design decisions, increase the dynamism and continuous design of innovative projects.

2011 ◽  
Vol 65 ◽  
pp. 160-164
Author(s):  
Na Li ◽  
Yi Guo

Distributed cooperative design is carried out by teams located at different places. The regional limitation must be overcome to facilitate information exchange, knowledge processing, and design result exchange, etc., among the teams. This paper proposes a multi-agent based model for cooperative design. The model consists of five types of agents according to cooperative design environment and design activities. Integrated fine grained security mechanism into different agents is the major feature of this model.


Author(s):  
Cassio D. Goncalves ◽  
Michael Kokkolaras

Competitive markets and complex business-to-business environments compel manufacturers to provide innovative service offerings along with their products. This necessitates effective methodologires for developing and implementing sucessful new business strategies. This article presents an approach to model tactical and operational decisions to support the design and development of Product-Service Systems (PSSs). A combination of Quality Function Deployment and Design-to-Cost techniques is proposed as the first step of a PSS design framework that aids design engineers to determine the relations among value to customer, functional requirements, design variables and cost. The objective is to identify PSS design alternatives that deliver value to customer while respecting cost targets. An aerospace software case study is conducted to demonstrate the proposed approach.


2019 ◽  
Vol 11 (2) ◽  
pp. 142-166 ◽  
Author(s):  
Nadiye Ozlem Erdil ◽  
Omid M. Arani

Purpose This paper aims to investigate to what extent quality function deployment (QFD) can be used in quality improvement rather than design activities. Design/methodology/approach A framework was developed for implementation of QFD as a quality improvement tool. A case study approach is used to test this framework, and quality issues were analyzed using the framework in a ceramic tile manufacturing company. Findings The results showed considerable improvements in the critical quality characteristics identified and sales rates, demonstrating the potential of QFD to be used in assessing and prioritizing areas of improvement, and converting them into measurable process or product requirements. Research limitations/implications One case study was completed. More studies would be beneficial to support current findings. Practical implications This framework provides structured approach and guidelines for practitioners in adapting QFD for quality improvements in existing products or processes. Originality/value This study proposes a new framework to use QFD in quality improvement activities, expanding its application areas. Moreover, the results of the literature study performed provide a valuable collection of practical QFD implementation examples.


2021 ◽  
Vol 11 (21) ◽  
pp. 10448
Author(s):  
Riccardo Karim Khamaisi ◽  
Elisa Prati ◽  
Margherita Peruzzini ◽  
Roberto Raffaeli ◽  
Marcello Pellicciari

The fourth industrial revolution is promoting the Operator 4.0 paradigm, originating from a renovated attention towards human factors, growingly involved in the design of modern, human-centered processes. New technologies, such as augmented reality or collaborative robotics are thus increasingly studied and progressively applied to solve the modern operators’ needs. Human-centered design approaches can help to identify user’s needs and functional requirements, solving usability issues, or reducing cognitive or physical stress. The paper reviews the recent literature on augmented reality-supported collaborative robotics from a human-centered perspective. To this end, the study analyzed 21 papers selected after a quality assessment procedure and remarks the poor adoption of user-centered approaches and methodologies to drive the development of human-centered augmented reality applications to promote an efficient collaboration between humans and robots. To remedy this deficiency, the paper ultimately proposes a structured framework driven by User eXperience approaches to design augmented reality interfaces by encompassing previous research works. Future developments are discussed, stimulating fruitful reflections and a decisive standardization process.


2021 ◽  
Vol 11 (20) ◽  
pp. 9407
Author(s):  
Stefan Goetz ◽  
Martin Roth ◽  
Benjamin Schleich

The development of complex products with high quality in dynamic markets requires appropriate robust design and tolerancing workflows supporting the entire product development process. Despite the large number of methods and tools available for designers and tolerance engineers, there are hardly any consistent approaches that are applicable throughout all development stages. This is mainly due to the break between the primarily qualitative approaches for the concept stage and the quantitative parameter and tolerance design activities in subsequent stages. Motivated by this, this paper bridges the gap between these two different views by contrasting the used terminology and methods. Moreover, it studies the effects of early robust design decisions with a focus on Suh’s Axiomatic Design axioms on later parameter and tolerance optimization. Since most robust design activities in concept design can be ascribed to these axioms, this allows reliable statements about the specific benefits of early robust design decisions on the entire process considering variation in product development for the first time. The presented effects on the optimization of nominal design parameters and their tolerance values are shown by means of a case study based on ski bindings.


Author(s):  
Hongtao Liang ◽  
Fengju Kang ◽  
Honghong Li

Unmanned Underwater Vehicle (UUV) formation system has an important role in the utilization of marine resource. In order to provide an efficient method to research modeling and simulation of UUV formation in the marine environment, the novel approach based on Multi-Agent Interaction Chain was proposed for the UUV formation system. Firstly, Multi-Agent Interaction Chain was analyzed, which mainly considered task and role of UUV in the formation, and the overall modeling process of UUV formation system based on Multi-Agent Interaction Chain was established. Then, the static structure of Multi-Agent Interaction Chain was researched focusing on Hybrid UUV-Agent model structure from the UUV-Agent State-Set and UUV-Agent Rule-Base which were the two aspects to strengthen reliability of interaction chain; the dynamic mechanism of Multi-Agent Interaction Chain was designed, which was focused on collaboration model and communication model through the Adaptive Dynamic Contract Net Protocol and KQML/XML/RTI. Finally, three experiments were established to verify the validity and effectiveness of proposed modeling approach for UUV formation system. Simulation results show the proposed model has good performance, which has important theoretical innovation and application prospects.


2018 ◽  
Vol 35 (3) ◽  
pp. 762-778 ◽  
Author(s):  
Katerina Gotzamani ◽  
Andreas Georgiou ◽  
Andreas Andronikidis ◽  
Konstantina Kamvysi

Purpose The purpose of this paper is to provide an enhanced version of quality function deployment (QFD) that captures customers’ present and future preferences, accurately prioritizes product specifications and eventually translates them into desirable quality products. Under rapidly changing environments, customer requirements and preferences are constantly changing and evolving, rendering essential the realization of the dynamic role of the “Voice of the Customer (VoC)” in the design and development of products. Design/methodology/approach The proposed methodological framework incorporates a Multivariate Markov Chain (MMC) model to describe the pattern of changes in customer preferences over time, the Fuzzy AHP method to accommodate the uncertainty and subjectivity of the “VoC” and the LP-GW-AHP to discover the most important product specifications in order to structure a robust QFD method. This enhanced QFD framework (MMC-QFD-LP-GW-Fuzzy AHP) takes into consideration the dynamic nature of the “VoC” captures the actual customers’ preferences (WHATs) and interprets them into design decisions (HOWs). Findings The integration of MMC models into the QFD helps to handle the sequences of customers’ preferences as categorical data sequences and to consider the multiple interdependencies among them. Originality/value In this study, a MMC model is introduced for the first time within QFD, in an effort to extend the concept of listening to further anticipating to customer wants. Gaining a deeper understanding of current and future customers’ preferences could help organizations to design products and plan strategies that more effectively and efficiently satisfy them.


2012 ◽  
pp. 1314-1329
Author(s):  
Giovanni Vincenti ◽  
James Braman

Emotions influence our everyday lives, guiding and misguiding us. They lead us to happiness and love, but also to irrational acts. Artificial intelligence aims at constructing agents that can emulate thinking processes, but artificial life still lacks emotions and all the consequences that come from them. This work introduces an emotionally aware framework geared towards multi-agent societies. Basing our model on the shoulders of solid foundations created by pioneers who first explored the coupling of emotions and agency, we extend their ideas to include inter-agent interaction and virtual genetics as key components of an agent’s emotive state. We also introduce possible future applications of this framework in consumer products as well as research endeavors.


Sign in / Sign up

Export Citation Format

Share Document