ATAC-STARR-seq v1

Author(s):  
Tyler Hansen ◽  
Emily Hodges

Transcriptional enhancers control cell-type specific gene expression in humans and dysfunction can lead to debilitating diseases, including cancer. Identifying bona-fide enhancers is difficult due to a lack of spatial or sequence constraints. In addition, only a small percentage of the genome is accessible in matured cell types; and therefore, most enhancers are inactive due to their chromatin context rather than intrinsic properties of the DNA sequence itself. For this reason, we decided to assay regulatory activity exclusively within accessible chromatin. To do this, we combined assay for transposase-accessible chromatin using sequencing (ATAC-seq) with self-transcribing active regulatory region sequencing (STARR-seq); we call this method ATAC-STARR-seq. With ATAC-STARR-seq, we identify both active and silent regulatory elements in GM12878 B cells; these active and silent elements are enriched for transcription factor motifs and histone modifications associated with activating and repressing regulation, respectively. We also show that ATAC-STARR-seq quantifies chromatin accessibility and transcription factor binding. We integrate this information and subset active regions based on transcription factor binding profiles. Depending on the transcription factors bound, subsets are enriched for distinct reactome pathways. Altogether, this highlights the power of ATAC-STARR-seq to investigate the transcriptional regulatory landscape of the human genome.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tejaswi Iyyanki ◽  
Baozhen Zhang ◽  
Qixuan Wang ◽  
Ye Hou ◽  
Qiushi Jin ◽  
...  

Abstract Muscle-invasive bladder cancers are characterized by their distinct expression of luminal and basal genes, which could be used to predict key clinical features such as disease progression and overall survival. Transcriptionally, FOXA1, GATA3, and PPARG are shown to be essential for luminal subtype-specific gene regulation and subtype switching, while TP63, STAT3, and TFAP2 family members are critical for regulation of basal subtype-specific genes. Despite these advances, the underlying epigenetic mechanisms and 3D chromatin architecture responsible for subtype-specific regulation in bladder cancer remain unknown. Result We determine the genome-wide transcriptome, enhancer landscape, and transcription factor binding profiles of FOXA1 and GATA3 in luminal and basal subtypes of bladder cancer. Furthermore, we report the first-ever mapping of genome-wide chromatin interactions by Hi-C in both bladder cancer cell lines and primary patient tumors. We show that subtype-specific transcription is accompanied by specific open chromatin and epigenomic marks, at least partially driven by distinct transcription factor binding at distal enhancers of luminal and basal bladder cancers. Finally, we identify a novel clinically relevant transcription factor, Neuronal PAS Domain Protein 2 (NPAS2), in luminal bladder cancers that regulates other subtype-specific genes and influences cancer cell proliferation and migration. Conclusion In summary, our work identifies unique epigenomic signatures and 3D genome structures in luminal and basal urinary bladder cancers and suggests a novel link between the circadian transcription factor NPAS2 and a clinical bladder cancer subtype.


2018 ◽  
Author(s):  
Mehran Karimzadeh ◽  
Michael M. Hoffman

AbstractMotivationIdentifying transcription factor binding sites is the first step in pinpointing non-coding mutations that disrupt the regulatory function of transcription factors and promote disease. ChIP-seq is the most common method for identifying binding sites, but performing it on patient samples is hampered by the amount of available biological material and the cost of the experiment. Existing methods for computational prediction of regulatory elements primarily predict binding in genomic regions with sequence similarity to known transcription factor sequence preferences. This has limited efficacy since most binding sites do not resemble known transcription factor sequence motifs, and many transcription factors are not even sequence-specific.ResultsWe developed Virtual ChIP-seq, which predicts binding of individual transcription factors in new cell types using an artificial neural network that integrates ChIP-seq results from other cell types and chromatin accessibility data in the new cell type. Virtual ChIP-seq also uses learned associations between gene expression and transcription factor binding at specific genomic regions. This approach outperforms methods that predict TF binding solely based on sequence preference, pre-dicting binding for 36 transcription factors (Matthews correlation coefficient > 0.3).AvailabilityThe datasets we used for training and validation are available at https://virchip.hoffmanlab.org. We have deposited in Zenodo the current version of our software (http://doi.org/10.5281/zenodo.1066928), datasets (http://doi.org/10.5281/zenodo.823297), predictions for 36 transcription factors on Roadmap Epigenomics cell types (http://doi.org/10.5281/zenodo.1455759), and predictions in Cistrome as well as ENCODE-DREAM in vivo TF Binding Site Prediction Challenge (http://doi.org/10.5281/zenodo.1209308).


2019 ◽  
Author(s):  
Arif Harmanci ◽  
Akdes Serin Harmanci ◽  
Jyothishmathi Swaminathan ◽  
Vidya Gopalakrishnan

Abstract Motivation Functional genomics experiments generate genomewide signal profiles that are dense information sources for annotating the regulatory elements. These profiles measure epigenetic activity at the nucleotide resolution and they exhibit distinctive patterns as they fluctuate along the genome. Most notable of these patterns are the valley patterns that are prevalently observed in assays such as ChIP Sequencing and bisulfite sequencing. The genomic positions of valleys pinpoint locations of cis-regulatory elements such as enhancers and insulators. Systematic identification of the valleys provides novel information for delineating the annotation of regulatory elements. Nevertheless, the valleys are not reported by majority of the analysis pipelines. Results We describe EpiSAFARI, a computational method for sensitive detection of valleys from diverse types of epigenetic profiles. EpiSAFARI employs a novel smoothing method for decreasing noise in signal profiles and accounts for technical factors such as sparse signals, mappability, and nucleotide content. In performance comparisons, EpiSAFARI performs favorably in terms of accuracy. The histone modification valleys detected by EpiSAFARI exhibit high conservation, transcription factor binding, and they are enriched in nascent transcription. In addition, the large clusters of histone valleys are found to be enriched at the promoters of the developmentally associated genes. Differential histone valleys exhibit concordance with differential DNase signal at cell line specific valleys. DNA methylation valleys exhibit elevated conservation and high transcription factor binding. Specifically, we observed enriched binding of transcription factors associated with chromatin structure around methyl-valleys. Availability EpiSAFARI is publicly available at https://github.com/harmancilab/EpiSAFARI Supplementary information Supplementary data are available at Bioinformatics online.


Genes ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 446 ◽  
Author(s):  
Shijie Xin ◽  
Xiaohui Wang ◽  
Guojun Dai ◽  
Jingjing Zhang ◽  
Tingting An ◽  
...  

The proinflammatory cytokine, interleukin-6 (IL-6), plays a critical role in many chronic inflammatory diseases, particularly inflammatory bowel disease. To investigate the regulation of IL-6 gene expression at the molecular level, genomic DNA sequencing of Jinghai yellow chickens (Gallus gallus) was performed to detect single-nucleotide polymorphisms (SNPs) in the region −2200 base pairs (bp) upstream to 500 bp downstream of IL-6. Transcription factor binding sites and CpG islands in the IL-6 promoter region were predicted using bioinformatics software. Twenty-eight SNP sites were identified in IL-6. Four of these 28 SNPs, three [−357 (G > A), −447 (C > G), and −663 (A > G)] in the 5′ regulatory region and one in the 3′ non-coding region [3177 (C > T)] are not labelled in GenBank. Bioinformatics analysis revealed 11 SNPs within the promoter region that altered putative transcription factor binding sites. Furthermore, the C-939G mutation in the promoter region may change the number of CpG islands, and SNPs in the 5′ regulatory region may influence IL-6 gene expression by altering transcription factor binding or CpG methylation status. Genetic diversity analysis revealed that the newly discovered A-663G site significantly deviated from Hardy-Weinberg equilibrium. These results provide a basis for further exploration of the promoter function of the IL-6 gene and the relationships of these SNPs to intestinal inflammation resistance in chickens.


2020 ◽  
Vol 30 (5) ◽  
pp. 736-748
Author(s):  
Luca Mariani ◽  
Kathryn Weinand ◽  
Stephen S. Gisselbrecht ◽  
Martha L. Bulyk

2006 ◽  
Vol 3 (1) ◽  
pp. 32-44 ◽  
Author(s):  
D. Ashok Reddy ◽  
B. V. L. S. Prasad ◽  
Chanchal K. Mitra

Summary The information content (relative entropy) of transcription factor binding sites (TFBS) is used to classify the transcription factors (TFs). The TF classes are clustered based on the TFBS clustering using information content. Any TF belonging to the TF class cluster has a chance of binding to any TFBS of the clustered group. Thus, out of the 41 TFBS (in humans), perhaps only 5 -10 TFs may be actually needed and in case of mouse instead of 13 TFs, we may have actually 5 or so TFs. The JASPAR database of TFBS are used in this study. The experimental data on TFs of specific gene expression from TRRD database is also coinciding with our computational results. This gives us a new way to look at the protein classification- not based on their structure or function but by the nature of their TFBS.


Gene ◽  
2004 ◽  
Vol 341 ◽  
pp. 149-165 ◽  
Author(s):  
Alvaro Rada Iglesias ◽  
Ellen Kindlund ◽  
Martti Tammi ◽  
Claes Wadelius

Sign in / Sign up

Export Citation Format

Share Document