scholarly journals Smart Materials and Their Application in Robotic Hand Systems: A State of the Art

2021 ◽  
Vol 6 (2) ◽  
pp. 401-426
Author(s):  
Paola Andrea Castiblanco ◽  
José Luis Ramirez ◽  
Astrid Rubiano

The use of soft robotics and smart materials for the design of devices that help the population in different tasks has gained a rising interest. Medicine is one of the fields where its implementation has shown significant advances. However, there are works related to applications, directed to the human body especially in replacement of devices for the upper limb. This document aims to explore the state of the art relating to the study of soft robotics, the implementation of smart materials, and the artificial muscles in the design or construction of hand prostheses or robotic devices analogous to the human hand.

Author(s):  
Thomas E. Pillsbury ◽  
Ryan M. Robinson ◽  
Norman M. Wereley

Pneumatic artificial muscles (PAMs) are used in robotics applications for their light-weight design and superior static performance. Additional PAM benefits are high specific work, high force density, simple design, and long fatigue life. Previous use of PAMs in robotics research has focused on using “large,” full-scale PAMs as actuators. Large PAMs work well for applications with large working volumes that require high force and torque outputs, such as robotic arms. However, in the case of a compact robotic hand, a large number of degrees of freedom are required. A human hand has 35 muscles, so for similar functionality, a robot hand needs a similar number of actuators that must fit in a small volume. Therefore, using full scale PAMs to actuate a robot hand requires a large volume which for robotics and prosthetics applications is not feasible, and smaller actuators, such as miniature PAMs, must be used. In order to develop a miniature PAM capable of producing the forces and contractions needed in a robotic hand, different braid and bladder material combinations were characterized to determine the load stroke profiles. Through this characterization, miniature PAMs were shown to have comparably high force density with the benefit of reduced actuator volume when compared to full scale PAMs. Testing also showed that braid-bladder interactions have an important effect at this scale, which cannot be modeled sufficiently using existing methods without resorting to a higher-order constitutive relationship. Due to the model inaccuracies and the limited selection of commercially available materials at this scale, custom molded bladders were created. PAMs created with these thin, soft bladders exhibited greatly improved performance.


2016 ◽  
Vol 23 (3) ◽  
pp. 93-106 ◽  
Author(s):  
Mariangela Manti ◽  
Vito Cacucciolo ◽  
Matteo Cianchetti

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1470 ◽  
Author(s):  
Flaviu Ionuț Birouaș ◽  
Radu Cătălin Țarcă ◽  
Simona Dzitac ◽  
Ioan Dzitac

Robotic exoskeletons are a trending topic in both robotics and rehabilitation therapy. The research presented in this paper is a summary of robotic exoskeleton development and testing for a human hand, having application in motor rehabilitation treatment. The mechanical design of the robotic hand exoskeleton implements a novel asymmetric underactuated system and takes into consideration a number of advantages and disadvantages that arose in the literature in previous mechanical design, regarding hand exoskeleton design and also aspects related to the symmetric and asymmetric geometry and behavior of the biological hand. The technology used for the manufacturing and prototyping of the mechanical design is 3D printing. A comprehensive study of the exoskeleton has been done with and without the wearer’s hand in the exoskeleton, where multiple feedback sources are used to determine symmetric and asymmetric behaviors related to torque, position, trajectory, and laws of motion. Observations collected during the experimental testing proved to be valuable information in the field of augmenting the human body with robotic devices.


2014 ◽  
Vol 34 (2) ◽  
pp. 123-127 ◽  
Author(s):  
Eujin Pei

Purpose – This feature article aims to review state-of-the-art developments in additive manufacture, in particular, 4D printing. It discusses what it is, what research has been carried out and maps potential applications and its future impact. Design/methodology/approach – The article first defines additive manufacturing technologies and goes on to describe the state-of-the-art. Following which the paper examines several case studies and maps a trend that shows an emergence of 4D printing. Findings – The case studies highlight a particular specialization within additive manufacture where the use of adaptive, biomimetic composites can be programmed to reshape, or have embedded properties or functionality that transform themselves when subjected to external stimuli. Originality/value – This paper discusses the state-of-the-art of additive manufacture, discussing strategies that can be used to reduce the print process (such as through kinematics); and the use of smart materials where parts adapt themselves in response to the surrounding environment supporting the notion of self-assemblies.


Author(s):  
Julio C. Díaz-Montes ◽  
Jesús Manuel Dorador-González

A review of the state of the art in prosthetic hands is presented; this review covers the most common commercial prosthesis and prototypes under development. In this analysis, prosthetic devices were divided in six systems: actuation, reduction, blocking, transmission, flexion and support. The information obtained is presented according to those systems. The most important features of each system are presented together with their relationship with the performance of the entire prosthesis. An analysis that indicates the way in which prosthesis take advantage of the capabilities of current technologies is presented. Recommendations for improving the performance of upper limb prosthesis are proposed.


Author(s):  
Mills Patel ◽  
Rudrax Khamar ◽  
Akshat Shah ◽  
Tej shah ◽  
Bhavik Soneji

This paper appraisals state-of-the-art dielectric elastomer actuators (DEAs) and their forthcoming standpoints as soft actuators which have freshly been considered as a crucial power generation module for soft robots. DEs behave as yielding capacitors, expanding in area and attenuation in thickness when a voltage is applied. The paper initiates with the explanation of working principle of dielectric elastomer grippers. Here the operation of DEAs include both physics and mechanical properties with its characteristics, we have describe methods for modelling and its introductory application. In inclusion, the artificial muscle based on DEA concept is also formally presented. This paper also elaborates DEAs popular application such as- Soft Robotics, Robotics grippers and artificial muscles.


2018 ◽  
Vol 30 (2) ◽  
pp. 163-164 ◽  
Author(s):  
Kazuo Ishii ◽  
Eiji Hayashi ◽  
Norhisam Bin Misron ◽  
Blair Thornton

The importance of primary industries, agriculture, forestry and fisheries, is obvious and needless to mention, however, the reduction of the working population and the aging problem make the situation of primary industry more sever. To compensate for the issues, the advanced technology in robotics has attracted attentions and expected the contributions in terms of productivity, cost effectiveness, pesticide-less, monitoring of the growth and harvesting, etc. Recently, robotic technologies are gradually being used in primary industry and their application area will expand more in the near future. This special issue’s objectives include collecting recent advances, automation, mechanization, research trends and their applications in agriculture, forestry and fisheries to promote a deeper understanding of major conceptual and technical challenges and facilitate spreading of recent breakthroughs in primary industries, and contribute to the enhancement of the quality of agricultural, forestry and fisheries robots by introducing the state-of-the-art in sensing, mobility, manipulation and related technologies. In this special issue, twelve papers are included. The first paper by Noguchi is the survey paper of the state-of-the-art in the agricultural vehicle type robots and discusses the future scope of agriculture with robotics. The next three papers are on tomato-monitoring system, and Fukui et al. propose a tomato fruit volume estimation method using saliency-based image processing and point cloud and clustering technology, Yoshida et al. do the cutting point identification for tomato-harvesting using a RGBD sensor and evaluate in the real farm experiments, and Fujinaga et al. present an image mosaicking method of tomato yard based on the infrared images and color images of tomato-clusters in the large green house. The fifth paper by Sori et al. reports a paddy weeding robot in wet-rice field to realize the pesticide-free produce of rice, and the sixth paper by Shigeta et al. is about an image processing system to measure cow’s BCS (Body Condition Score) automatically before milking cows and analyzes the two months data by CNN (Convolutional Neural Network). The seventh paper by Inoue et al. reports on an upper-limb power assist robot with a single actuator to reduce the weight and cost. The assist machine supports the shoulder and elbow movements for viticulture operations and upper-limb holding for load transport tasks. In the next paper, Tominaga et al. show an autonomous robotic system to move between the trees without damaging them and to cut the weeds in the forest for the forest industry. The last four papers are for the fishery industry, and Komeyama et al. propose a methods for monitoring the size of fish, red sea bream (RSB) aquaculture by developing a stereo vision system to avoid the risks of physical injury and mental stress to the fish. Nishida et al. report on a hovering type underwater robot to measure seafloor for monitoring marine resources whose sensor can be replaced depending on missions as the open hardware system. Yasukawa et al. propose a vision system for an autonomous underwater robot with a benthos sampling function, especially, sampling-autonomous underwater vehicles (SAUVs) to achieve a new sampling mission. The last paper by Han et al. is for gait planning and simulation analysis of an amphibious quadruped robot in the field of fisheries and aquaculture. We hope that this special issue can contributes to find solutions in primary industries, agriculture, forestry and fisheries.


Author(s):  
Evgenios Vlachos ◽  
Henrik Schärfe

Humans have adjusted their space, their actions, and their performed tasks according to their morphology, abilities, and limitations. Thus, the properties of a social robot should fit within these predetermined boundaries when, and if it is beneficial for the user, and the notion of the task. On such occasions, android and humanoid hand models should have similar structure, functions, and performance as the human hand. In this paper we present the anatomy, and the key functionalities of the human hand followed by a literature review on android/humanoid hands for grasping and manipulating objects, as well as prosthetic hands, in order to inform roboticists about the latest available technology, and assist their efforts to describe the state-of-the-art in this field.


Author(s):  
Giulio Garaffa ◽  
David John Ralph

Although the last decades have been characterized by the continuous evolution of reconstructive surgery and in particular of free tissue transfer techniques, the repair and reconstruction of the penis remains anatomically, functionally, and aesthetically a great challenge. This is due to the unique architecture of the penis and to the absence in the whole human body of an alternative tissue that could adequately replace the corpora cavernosa in terms of colour, texture, structure, and ultimately, function. The aim of this chapter is to describe the state of the art in penile reconstructive surgery with an emphasis on the cosmetic and functional outcome.


Sign in / Sign up

Export Citation Format

Share Document