scholarly journals Optimum Energy Control of a Robotic Electric Vehicle at Time with Improved Control Assignment Approaches

Author(s):  
Damodara Reddy K, Et. al.

Vehicles have made extraordinary commitment to the development of current culture by fulfilling the requirements for more prominent portability in everyday life. The development of Internal Combustion Engine has contributed a ton to the car area. In any case, a lot of harmful discharges as carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), unburned hydrocarbons (HCs, etc have been messing contamination up, a dangerous atmospheric devation, and annihilation of the ozone layer. As the current pattern proposes, this method of transport is probably going to supplant inside burning motor (ICE) vehicles soon. Every one of the primary EV segments has various innovations that are at present being used or can get conspicuous later on. Improved control assignment approach strategies are fit for securing ideal force taking care of, obliging framework errors, and fitting ongoing applications can fundamentally improve the powertrain productivity at various working conditions. Rule-based techniques are just organized and effectively implementable continuously; however, a restricted optimality in force dealing with choices can be achieved. Enhancement based strategies are more fit for achieving this optimality at the cost of expanded computational burden. Over the most recent couple of years, these improvement based strategies have been being worked on to suit continuous application utilizing more prescient, recognitive and man-made reasoning apparatuses. This paper presents a conversation about these new patterns continuously improved control assignment approach. Consequently HEVs give better fuel economy contrasted with ICE based vehicles/regular vehicle. Energy management techniques are the calculations that choose the force split among motor constantly to improve the fuel economy and advance the presentation of HEVs.

Author(s):  
Sandro P. Nüesch ◽  
Anna G. Stefanopoulou ◽  
Li Jiang ◽  
Jeffrey Sterniak

Highly diluted, low temperature homogeneous charge compression ignition (HCCI) combustion leads to ultra-low levels of engine-out NOx emissions. A standard drive cycle, however, would require switches between HCCI and spark-ignited (SI) combustion modes. In this paper a methodology is introduced, investigating the fuel economy of such a multimode combustion concept in combination with a three-way catalytic converter (TWC). The TWC needs to exhibit unoccupied oxygen storage sites in order to show acceptable performance. But the lean exhaust gas during HCCI operation fills the oxygen storage and leads to a drop in NOx conversion efficiency. Eventually the levels of NOx become unacceptable and a mode switch to a fuel rich combustion mode is necessary in order to deplete the oxygen storage. The resulting lean-rich cycling leads to a penalty in fuel economy. In order to evaluate the impact of those penalties on fuel economy, a finite state model for combustion mode switches is combined with a longitudinal vehicle model and a phenomenological TWC model, focused on oxygen storage. The aftertreatment model is calibrated using combustion mode switch experiments from lean HCCI to rich spark-assisted HCCI and back. Fuel and emissions maps acquired in steady state experiments are used. Two depletion strategies are compared in terms of their influence on drive cycle fuel economy and NOx emissions.


1995 ◽  
Vol 198 (3) ◽  
pp. 629-632 ◽  
Author(s):  
V A Langman ◽  
T J Roberts ◽  
J Black ◽  
G M Maloiy ◽  
N C Heglund ◽  
...  

Large animals have a much better fuel economy than small ones, both when they rest and when they run. At rest, each gram of tissue of the largest land animal, the African elephant, consumes metabolic energy at 1/20 the rate of a mouse; using existing allometric relationships, we calculate that it should be able to carry 1 g of its tissue (or a load) for 1 km at 1/40 the cost for a mouse. These relationships between energetics and size are so consistent that they have been characterized as biological laws. The elephant has massive legs and lumbers along awkwardly, suggesting that it might expend more energy to move about than other animals. We find, however, that its energetic cost of locomotion is predicted remarkably well by the allometric relationships and is the lowest recorded for any living land animal.


Author(s):  
Lu Qiu ◽  
Rolf D. Reitz

Condensation of gaseous fuel is investigated in a low temperature combustion engine fueled with double direct-injected diesel and premixed gasoline at two load conditions. Possible condensation is examined by considering real gas effects with the Peng-Robinson equation of state and assuming thermodynamic equilibrium of the two fuels. The simulations show that three representative condensation events are observed. The first two condensations are found in the spray some time after the two direct injections, when the evaporative cooling reduces the local temperature until phase separation occurs. The third condensation event occurs during the late stages of the expansion stroke, during which the continuous expansion sends the local fluid into the two-phase region again. Condensation was not found to greatly affect global parameters, such as the average cylinder pressure and temperature mainly because, before the main combustion event, the condensed phase was converted back to the vapor phase due to compression and/or first stage heat release. However, condensed fuel is shown to affect the emission predictions, including engine-out particulate matter and unburned hydrocarbons.


2018 ◽  
Vol 30 (3) ◽  
Author(s):  
Jaharatul Dini Karen Lee Abdullah ◽  
Nazri Ali ◽  
Roslli Noor Mohamed ◽  
Mohammed Mu’azu Abdullahi

The numerous demanding application of concrete is not readily met with Ordinary Portland Cement (OPC) alone. To meet up the demand and as well as ensured the green concrete durability, it has becomes necessary to incorporate mineral additions with the best combination of others by-product as replacement to improve the performance without jeopardizing the strength of the concrete. In the construction industry, OPC cement and river sand are used as important building material making it scarce and limited. Whereas, as for the cement is well known as the biggest culprits for emitting carbon dioxide (CO2). Hence, partial replacement of cement becomes a necessity as well as natural sand in concrete by waste material or by-product without compromising the quality of the end product. Partial replacement with Ground Granulated Blast furnace Slag (GGBS), Fly Ash (PFA), Silica Fumes (SILICA) incorporates with 100% of Quarry Dust (QD) as sand replacement. The usage of 100% QD with OPC+PFA+SILICA (Mix 2) produced more durable concrete with good temperature control and better furnishing than with 100% river. In addition to the cost effect benefit, the reduction in depletion of river sand, addressing environment and sustainability issues, it is a valuable contribution in creating a green concrete.


2011 ◽  
Author(s):  
Randy Chugh ◽  
Maureen Cropper ◽  
Urvashi Narain

Author(s):  
Ian W. Gibson

Healthcare has delivered incredible improvements in diagnosis and treatment of diseases but faces challenges to improve the delivery of services. Healthcare is a complex system using expensive and scarce resources. Benchmarking, experience, and lean management techniques currently provide the basis for developing service delivery models and facility planning. Simulation modeling can supplement these methods to enable a better understanding of the complex systems involved. This provides the basis for developing and evaluating options to provide improved healthcare delivery. Simulation modeling enables a better understanding of the processes and the resources used in delivering healthcare services and improving healthcare delivery systems. Options to improve the cost effectiveness can be evaluated without experimenting with patients. This chapter reviews the current challenges and methods including the use of simulation modeling. Analysis of emergency patient flows through a major hospital shows the capability of simulation modeling to enable improvement of the healthcare delivery system. This chapter enables healthcare managers to understand the power simulation modeling brings to the improvement of healthcare delivery.


2020 ◽  
Vol 11 (2) ◽  
pp. 31 ◽  
Author(s):  
Heejung Jung

Hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs) are evolving rapidly since the introduction of Toyota Prius into the market in 1997. As the world needs more fuel-efficient vehicles to mitigate climate change, the role of HEVs and PHEVs are becoming ever more important. While fuel economies of HEVs and PHEVs are superior to those of internal combustion engine (ICE) powered vehicles, they are partially powered by batteries and therefore they resemble characteristics of battery electric vehicles (BEVs) such as dependence of fuel economy on ambient temperatures. It is also important to understand how different extent of hybridization (a.k.a., hybridization ratio) affects fuel economy under various driving conditions. In addition, it is of interest to understand how HEVs and PHEVs compare with BEVs at a similar vehicle weight. This study investigated the relationship between vehicle mass and vehicle performance parameters, mainly fuel economy and driving range of PHEVs focused on 2018 and 2019 model years using the test data available from fuel economy website of the US Environmental Protection Agency (EPA). Previous studies relied on modeling to understand mass impact on fuel economy for HEV as there were not enough number of HEVs in the market to draw a trendline at the time. The study also investigated the effect of ambient temperature for HEVs and PHEVs and kinetic energy recovery of the regenerative braking using the vehicle testing data for model year 2013 and 2015 from Idaho National Lab (INL). The current study assesses current state-of-art for PHEVs. It also provides analysis of experimental results for validation of vehicle dynamic and other models for PHEVs and HEVs.


Author(s):  
Justin Johnson ◽  
Karen R. Den Braven

Gasoline direct injection (GDI) two-stroke engine technology has been developed for use in snowmobile applications. Applying GDI to a two-stroke engine significantly reduces emissions of unburned hydrocarbons and improves fuel economy by reducing or eliminating the short circuiting of fuel that occurs in conventional carbureted two-stroke engines. The GDI design allows for two different modes of combustion, stratified and homogeneous. Stratified combustion is typically used during idle and light to moderate loads at low engine speeds while homogeneous combustion is used at moderate to high loads and medium to high engine speeds. This work presents the process and results of determining which mode of combustion provides better fuel economy during cruise point operation, and where the transition from stratified to homogeneous combustion should occur in snowmobile operation. Results show that homogeneous calibration is the superior mode of combustion for the cruise points of a snowmobile.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3528
Author(s):  
Jakub Lasocki ◽  
Artur Kopczyński ◽  
Paweł Krawczyk ◽  
Paweł Roszczyk

A range extender is an auxiliary power unit, usually consisting of an internal combustion engine and an electric generator, which is used to charge a battery of an electric vehicle in order to increase its range. This paper considers a range extender supplied with liquefied petroleum gas (LPG). The aim is to provide detailed data on thermal efficiency, brake specific fuel consumption (BSFC), and unit emission of carbon dioxide (CO2) in a broad spectrum of range extender operating conditions defined by rotational speed and torque. The experimental investigation has been conducted using a laboratory test stand equipped with an energy dissipation system of adjustable resistance. Measurement results, including fuel flow rate, were processed using custom algorithm for generating maps, i.e., two-dimensional dependencies of the considered parameters on the rotational speed and torque. The maps obtained for LPG supply were compared with those for gasoline supply. The results demonstrated feasibility of LPG-supplied range extender. Its BSFC and thermal efficiency were at a comparable level to those obtained for gasoline supply, but with less CO2 emission. The empirical data collected has been adopted in the simulation of extended-range electric vehicle in a driving cycle, showing the potential of utilizing the results of this study.


2019 ◽  
Vol 141 (03) ◽  
pp. S08-S15
Author(s):  
Guoming G. Zhu ◽  
Chengsheng Miao

Making future vehicles intelligent with improved fuel economy and satisfactory emissions are the main drivers for current vehicle research and development. The connected and autonomous vehicles still need years or decades to be widely used in practice. However, some advanced technologies have been developed and deployed for the conventional vehicles to improve the vehicle performance and safety, such as adaptive cruise control (ACC), automatic parking, automatic lane keeping, active safety, super cruise, and so on. On the other hand, the vehicle propulsion system technologies, such as clean and high efficiency combustion, hybrid electric vehicle (HEV), and electric vehicle, are continuously advancing to improve fuel economy with satisfactory emissions for traditional internal combustion engine powered and hybrid electric vehicles or to increase cruise range for electric vehicles.


Sign in / Sign up

Export Citation Format

Share Document