scholarly journals Rice-Rape Rotation Benefits to Improve Radiation and Heat Use Efficiencies and Mitigate Global Warming Potential of Paddy Cropping Systems in Central China

2021 ◽  
Vol 25 (06) ◽  
pp. 1231-1237
Author(s):  
Gong Songling

Replacing bare fallow by rotation with winter cereal crops such as winter wheat and oil rape have been used to improve annual productivity in paddy cropping system in central China. However, the effects of rotation on light and heat resources utilization and greenhouse gases have yet to be measured. A two-year field experiment was conducted to compare solar radiation and heat use efficiencies, methane (CH4) and nitrous oxide (N2O) emissions and global warming potential (GWP) of two winter rotations: rice-wheat and rice-rape taking rice-fallow as a check. The results of this study showed that rice-wheat had the highest annual grain yield (two-year means were 16.2 t ha-1) and annual above ground biomass (32.9 t ha-1) followed by ricerape and by rice-fallow. No significant effect was observed for winter rotation on the performance of rice grain yield and growth, in spite of a large quantity of straw returning by winter crops. Solar radiation and heat resources utilization and their production efficiency were improved in the winter season by rotation with winter crops. Rice-wheat and rice-rape also increased light and heat resources utilization efficiency from the annual perspective. Compared with rice-fallow, CH4 flux in the rice season among the two studying years was increased by 42.0% by rice-wheat but was decreased by 35.6% by rice-rape. For the annual level, CH4 flux was promoted by 40.9% by rice-wheat and declined by 35.5% by rice-rape. For the rice season the N2O seasonal flux was increased by 54.2 and by 8.3% in rice-wheat and rice-rape plots, respectively. The values for GWP and for yield-scaled GWP were highest in rice-wheat and lowest in rice-rape system. In conclusion, rice-rape system could be a better choice to increase solar radiation and heat resources utilization and mitigate greenhouse gases emission. © 2021 Friends Science Publishers

Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 465 ◽  
Author(s):  
Kiwamu Ishikura ◽  
Untung Darung ◽  
Takashi Inoue ◽  
Ryusuke Hatano

This study investigated spatial factors controlling CO2, CH4, and N2O fluxes and compared global warming potential (GWP) among undrained forest (UDF), drained forest (DF), and drained burned land (DBL) on tropical peatland in Central Kalimantan, Indonesia. Sampling was performed once within two weeks in the beginning of dry season. CO2 flux was significantly promoted by lowering soil moisture and pH. The result suggests that oxidative peat decomposition was enhanced in drier position, and the decomposition acidify the peat soils. CH4 flux was significantly promoted by a rise in groundwater level, suggesting that methanogenesis was enhanced under anaerobic condition. N2O flux was promoted by increasing soil nitrate content in DF, suggesting that denitrification was promoted by substrate availability. On the other hand, N2O flux was promoted by lower soil C:N ratio and higher soil pH in DBL and UDF. CO2 flux was the highest in DF (241 mg C m−2 h−1) and was the lowest in DBL (94 mg C m−2 h−1), whereas CH4 flux was the highest in DBL (0.91 mg C m−2 h−1) and was the lowest in DF (0.01 mg C m−2 h−1), respectively. N2O flux was not significantly different among land uses. CO2 flux relatively contributed to 91–100% of GWP. In conclusion, it is necessary to decrease CO2 flux to mitigate GWP through a rise in groundwater level and soil moisture in the region.


2021 ◽  
pp. 1-13
Author(s):  
Kehan Li

Climate change is of great importance in modern times and global warming is considered as a significant part of climate change. It is proved that human’s emissions such as greenhouse gases are one of the main sources of global warming (IPCC, 2018). Apart from greenhouse gases, there is another kind of matter being released in quantity via emissions from industries and transportations and playing an important role in global warming, which is aerosol. However, atmospheric aerosols have the net effect of cooling towards global warming. In this paper, climate change with respect to global warming is briefly introduced and the role of aerosols in the atmosphere is emphasized. Besides, properties of aerosols including dynamics and thermodynamics of aerosols as well as interactions with solar radiation are concluded. In the end, environmental policies and solutions are discussed. Keywords: Climate change, Global warming, Atmospheric aerosols, Particulate matter, Radiation, Environmental policy.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Zhi-Sheng Zhang ◽  
Cou-Gui Cao ◽  
Li-Jin Guo ◽  
Cheng-Fang Li

A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha−1) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0–20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha−1 season−1to 1654 kg C ha−1 season−1than no residue treatment. Residue mulching significantly increased emissions of CO2and N2O but decreased CH4emissions. Residue mulching treatments significantly increased GWP by 9–30% but significantly decreased net GWP by 33–71% and GHGI by 35–72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China.


2015 ◽  
Vol 203 ◽  
pp. 46-54 ◽  
Author(s):  
Bing Gao ◽  
Xiaotang Ju ◽  
Qingfeng Meng ◽  
Zhenling Cui ◽  
Peter Christie ◽  
...  

2005 ◽  
Vol 68 (3) ◽  
pp. 281-302 ◽  
Author(s):  
Keith P. Shine ◽  
Jan S. Fuglestvedt ◽  
Kinfe Hailemariam ◽  
Nicola Stuber

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 888
Author(s):  
Md. Khairul Alam ◽  
Richard W. Bell ◽  
Mirza Hasanuzzaman ◽  
N. Salahin ◽  
M.H. Rashid ◽  
...  

Rice-based intensive cropping systems require high input levels making them less profitable and vulnerable to the reduced availability of labor and water in Asia. With continuous conventional puddled rice transplanting, the situation is exacerbated by damaged soil structure, declining underground water and decreasing land and water productivity. To minimize these negative effects a range of new crop establishment practices have been developed (zero tillage, dry direct seeding, wet direct seeding, water seeding, strip planting, bed planting, non-puddled transplanting of rice, mechanical transplanting of rice crop and combinations thereof) with varying effects on soil health, crop productivity, resource saving and global warming mitigation potential. Some of these allow Conservation Agriculture (CA) to be practiced in the rice-based mono-, double- and triple cropping systems. Innovations in machinery especially for smallholder farms have supported the adoption of the new establishment techniques. Non-puddling establishment of rice together with increased crop residue retention increased soil organic carbon by 79% and total N (TN) in soil by 62% relative to conventional puddling practice. Rice establishment methods (direct seeding of rice, system of rice intensification and non-puddled transplanting of rice) improve soil health by improving the physical (reduced bulk density, increased porosity, available water content), chemical (increased phosphorus, potassium and sulphur in their available forms) and biological properties (microbiome structure, microbial biomass C and N) of the soil. Even in the first year of its practice, the non-puddled transplanting method of rice establishment and CA practices for other crops increase the productivity of the rice-based cropping systems. Estimates suggest global warming potential (GWP) (the overall net effect) can be reduced by a quarter by replacing conventional puddling of rice by direct-seeded rice in the Indo-Gangetic Plains for the rice-based cropping system. Moreover, non-puddled transplanting of rice saves 35% of the net life cycle greenhouse gases (GHGs) compared with the conventional practice by a combination of decreasing greenhouse gases emissions from soil and increasing soil organic carbon (SOC). Though the system of rice intensification decreases net GHG emission, the practice releases 1.5 times greater N2O due to the increased soil aeration. There is no single rice establishment technology that is superior to others in all circumstances, rather a range of effective technologies that can be applied to different agro-climates, demography and farm typologies.


Sign in / Sign up

Export Citation Format

Share Document