scholarly journals Estrategias de adaptación al cambio climático en el viñedo de la cuenca mediterránea: el caso del Rioja

Author(s):  
Teodoro Lasanta ◽  
Carlos Baroja-Sáenz ◽  
Melani Cortijos-López ◽  
Estela Nadal-Romero ◽  
Ignacio Martín ◽  
...  

Climate change is promoting increasingly hot and dry conditions in the vineyards of the Mediterranean basin, affecting both the physiology and phenology of the vine, as well as the production and quality of the grape. In this context, adaptation and mitigation measurements against climate change are necessary to maintain high quality wines and varietal typicity, as well as to respond to market demands. The objective of this study is to show adaptation strategies that are being carried out or considered by winegrowers of the Denomination of Origin Qualified Rioja (DOCa Rioja). Among the strategies, the following should be highlighted: changes in the location of the vineyard, either towards areas with irrigation possibilities and very fertile soils (mainly low terraces), or towards higher altitude areas (mainly high glacis), thus trying to avoid the effects of water stress and increased temperatures; and (ii) modifications in the strain conduction system, often replacing the vessel conduction with the trellis conduction, in order to match a greater degree of mechanization of the agronomic tasks and the improvement of the improvement of the vine’s microclimate, especially in the new plantations in very fertile soils. These strategies will be increasingly relevant, taking into account the foreseeable increase in temperatures and droughts in the future climate scenarios. However, the question arises as to whether these strategies will be sufficient or whether it will be necessary to eliminate current restrictions imposed by DOCa Rioja, such as expanding the vineyard in mountain areas or introducing new varieties.

Agronomy ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Helder Fraga ◽  
Marco Moriondo ◽  
Luisa Leolini ◽  
João A. Santos

The olive tree (Olea europaea L.) is an ancient traditional crop in the Mediterranean Basin. In the Mediterranean region, traditional olive orchards are distinguishable by their prevailing climatic conditions. Olive trees are indeed considered one of the most suitable and best-adapted species to the Mediterranean-type climate. However, new challenges are predicted to arise from climate change, threatening this traditional crop. The Mediterranean Basin is considered a climate change “hotspot,” as future projections hint at considerable warming and drying trends. Changes in olive tree suitability have already been reported over the last few decades. In this context, climate change may become particularly challenging for olive growers. The growing evidence for significant climate change in the upcoming decades urges adaptation measures to be taken. To effectively cope with the projected changes, both short and long-term adaptation strategies must be timely planned by the sector stakeholders and decision-makers to adapt for a warmer and dryer future. The current manuscript is devoted to illustrating the main impacts of climate change on olive tree cultivation in the Mediterranean Basin, by reviewing the most recent studies on this subject. Additionally, an analysis of possible adaptation strategies against the potentially negative impacts of climate change was also performed.


Author(s):  
Maufidah Nazilatul Habibah ◽  
Mohammad Ansori

This research focused on the following things; a) How are the problems resulting from climate change to the quality of the environment and people in Kalikatir village? b) How are strategies in solving the problem of climate change through adaptation and mitigation efforts? c). What was the meaning of da’wah in this community organizing? Researchers used the Participatory Action Research (PAR) method along with Participatory Rural Appraisal (PRA) techniques for data mining. The dynamics of community organizing included inculturation, knowing, understanding, planning, action, monev, reflection, and report. The results of the research showed that the local climate change presents various problems in the disaster of natural resources, food resistance, economy, and health sectors. Community organizing of people produced a "Farmer Group Learning Center", and also facilitated some access to the information, knowledge, and experience about climate change. Da’wah activities showed in this community organizing on the form of tathwir and tamkin which transformed the teaching of Islam through empowering the community of their human, social, economic, and environmental resources.


2021 ◽  
Author(s):  
Johannes Vogel

<p>The ecosystems of the Mediterranean Basin are particularly prone to climate change and related alterations in climatic anomalies. The seasonal timing of climatic anomalies is crucial for the assessment of the corresponding ecosystem impacts; however, the incorporation of seasonality is neglected in many studies. We quantify ecosystem vulnerability by investigating deviations of the climatic drivers temperature and soil moisture during phases of low ecosystem productivity for each month of the year over the period 1999 – 2019. The fraction of absorbed photosynthetically active radiation (FAPAR) is used as a proxy for ecosystem productivity. Air temperature is obtained from the reanalysis data set ERA5 Land and soil moisture and FAPAR satellite products are retrieved from ESA CCI and Copernicus Global Land Service, respectively. Our results show that Mediterranean ecosystems are vulnerable to three soil moisture regimes during the course of the year. A phase of vulnerability to hot and dry conditions during late spring to midsummer is followed by a period of vulnerability to cold and dry conditions in autumn. The third phase is characterized by cold and wet conditions coinciding with low ecosystem productivity in winter and early spring. These phases illustrate well the shift between a soil moisture-limited regime in summer and an energy-limited regime in winter in the Mediterranean Basin. Notably, the vulnerability to hot and dry conditions during the course of the year is prolonged by several months in the Eastern Mediterranean compared to the Western Mediterranean. Our approach facilitates a better understanding of ecosystem vulnerability at certain stages during the year and is easily transferable to other study areas and ecoclimatological variables.</p>


Urban Science ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. 57 ◽  
Author(s):  
Ricardo Cruz de Carvalho ◽  
Zulema Varela ◽  
Teresa Afonso do Paço ◽  
Cristina Branquinho

Green roofs are important infrastructures to address the effects of climate change in urban areas. However, most studies and applications have been done in cooler and wetter regions of the northern hemisphere. Climate change will lead to more extreme weather events, such as increased drought and decreased precipitation with intense flash rain events. Increase desertification is expected especially in the Mediterranean Basin, where in summer, radiation and temperature are high and water is scarce. Therefore, while vascular plants increase water consumption in green roofs during warmer periods, mosses present themselves as potential candidates due to their poikilohydric nature, responding to the environmental availability of water, completely drying out and recovering upon rehydration. Although criteria for the selection of vascular plants adapted to the Mediterranean and suitable for green roofs have been developed, no information is available regarding the selection of mosses based on scientific criteria. Here we propose selection criteria for moss species based on ecological preferences according to Ellenberg’s values and help to define moss traits suitable for a nonirrigated, nature-based green roof that tolerates the Mediterranean climate. The main result is a table of potential candidate mosses that can be either used as standalone or in conjunction with vascular plants to decrease water usage and/or manage stormwater through an easily applicable selection methodology. For green roof practitioners, we proposed that acrocarpous mosses exhibiting turf/cushion life forms and colonist or perennial life strategies best fit the requirements for such a green infrastructure in extreme climate regions with scarce water resources.


2020 ◽  
Vol 12 (4) ◽  
pp. 1315
Author(s):  
Federico Martinelli ◽  
Francisco Javier Ollero ◽  
Antonio Giovino ◽  
Anna Perrone ◽  
Abdelkader Bekki ◽  
...  

In order to gain insight into the complex molecular networks driving legume adaptation caused by climate change, it is necessary to deeply characterize the existing germplasm in response to the environmental constraint predicted to worsen in the near future: drought. In this study, we propose to perform a three-year deep agronomic characterization of local genotypes of selected legumes in abiotic stressing conditions through controlled and field experiments conducted in several countries of the Mediterranean basin (Italy, Spain, Algeria, Tunisia, Turkey, Lebanon, and Croatia). These phenotypic analyses will be integrated with a multi-omic approach aiming at identifying the key players involved in the modulation of the analyzed traits that includes the analysis of the plant methylome, transcriptome, and proteome. Following this approach, we propose to deliver epigenomic markers linked with rapid adaptation mechanisms in response to drought. Besides, new genetic variability by breeding could be created in stressing conditions and produce the basis for the obtainment of more productive cultivars in worsening environments. The epigenetic marks identified in “omic” activities will be validated in molecular marker-assisted selection in F2–F4 populations. Finally, specific rhizobia strains for the best evaluated genotypes will be identified in order to enhance symbiotic nitrogen fixation in drought stress conditions with selected cultivars.


2016 ◽  
Vol 566-567 ◽  
pp. 1339-1348 ◽  
Author(s):  
M. Tomaszkiewicz ◽  
M. Abou Najm ◽  
D. Beysens ◽  
I. Alameddine ◽  
E. Bou Zeid ◽  
...  

2020 ◽  
Author(s):  
Manfred A. Lange

<p>The region of the Middle East and North Africa (MENA region) encompasses countries of the eastern Mediterranean, the Middle East, and North Africa, from Morocco in the West to the Islamic Republic of Iran in the East and from the Syrian Arab Republic in the North to the Republic of Yemen in the South. It is home to some 500 million inhabitants and is characterized by widely varied political and economic settings and a rich cultural heritage. Stark environmental gradients, as well as significant differences in the provision of ecosystem services, both East to West and South to North, are typical for the MENA Region.</p><p>Climate changes in the Mediterranean Basin, in general, and in the MENA countries, in particular, currently exceed global mean values significantly. Numerical model results indicate that this trend will continue in the near future and imply that the number of extreme summer temperatures and heatwaves may increase significantly over the coming decades. At the same time, a decrease in precipitation and a significantly longer dry season for most MENA countries than at present are anticipated. This leads to a significantly increased demand for water and energy. In addition, other factors further exacerbate these demands in the MENA, including the general economic development, extreme population growth and increasing urbanization, changes in lifestyle, shifting consumption patterns, inefficiencies in the use of resources that result from technical and managerial inadequacies and energy and water subsidies in several countries of the region to name but a few.</p><p>The impacts of climate change will be particularly severe in urban settings and large cities of the Mediterranean Basin and the MENA region. Cities will see an enhanced heat accumulation compared to the surrounding rural land due to heat-build-up in buildings, transportation infrastructure, and enhanced human activities. Reduced ventilation within cities exacerbates the warming, particularly during summer heatwaves. Consequently, additional, energy-intensive space cooling will be needed in order to maintain acceptable indoor conditions. With regard to water scarcity, the aforementioned decreases in precipitation will reduce available drinking water for city inhabitants and green spaces. This requires the provision of unconventional water sources, e.g., through desalination, which requires significant quantities of energy. Overall, climate change will exacerbate resource demand for water and energy, in general, and in urban settings, in particular.</p><p>However, the provision of water and energy are interrelated. In order to maintain water and energy security in the MENA region, these issues need therefore be considered holistically in the framework of the Water-Energy-Nexus (WEN).</p><p>The present paper aims to elucidate some of the interrelationships between water and energy resources and their provision and will briefly outline a few of the possible mitigation/adaptation options/strategies to reduce adverse impacts of climate change on the MENA region and its inhabitants.</p>


2012 ◽  
Vol 63 (3) ◽  
pp. 251 ◽  
Author(s):  
Scott C. Chapman ◽  
Sukumar Chakraborty ◽  
M. Fernanda Dreccer ◽  
S. Mark Howden

Climate change in Australia is expected to influence crop growing conditions through direct increases in elevated carbon dioxide (CO2) and average temperature, and through increases in the variability of climate, with potential to increase the occurrence of abiotic stresses such as heat, drought, waterlogging, and salinity. Associated effects of climate change and higher CO2 concentrations include impacts on the water-use efficiency of dryland and irrigated crop production, and potential effects on biosecurity, production, and quality of product via impacts on endemic and introduced pests and diseases, and tolerance to these challenges. Direct adaptation to these changes can occur through changes in crop, farm, and value-chain management and via economically driven, geographic shifts where different production systems operate. Within specific crops, a longer term adaptation is the breeding of new varieties that have an improved performance in ‘future’ growing conditions compared with existing varieties. In crops, breeding is an appropriate adaptation response where it complements management changes, or when the required management changes are too expensive or impractical. Breeding requires the assessment of genetic diversity for adaptation, and the selection and recombining of genetic resources into new varieties for production systems for projected future climate and atmospheric conditions. As in the past, an essential priority entering into a ‘climate-changed’ era will be breeding for resistance or tolerance to the effects of existing and new pests and diseases. Hence, research on the potential incidence and intensity of biotic stresses, and the opportunities for breeding solutions, is essential to prioritise investment, as the consequences could be catastrophic. The values of breeding activities to adapt to the five major abiotic effects of climate change (heat, drought, waterlogging, salinity, and elevated CO2) are more difficult to rank, and vary with species and production area, with impacts on both yield and quality of product. Although there is a high likelihood of future increases in atmospheric CO2 concentrations and temperatures across Australia, there is uncertainty about the direction and magnitude of rainfall change, particularly in the northern farming regions. Consequently, the clearest opportunities for ‘in-situ’ genetic gains for abiotic stresses are in developing better adaptation to higher temperatures (e.g. control of phenological stage durations, and tolerance to stress) and, for C3 species, in exploiting the (relatively small) fertilisation effects of elevated CO2. For most cultivated plant species, it remains to be demonstrated how much genetic variation exists for these traits and what value can be delivered via commercial varieties. Biotechnology-based breeding technologies (marker-assisted breeding and genetic modification) will be essential to accelerate genetic gain, but their application requires additional investment in the understanding, genetic characterisation, and phenotyping of complex adaptive traits for climate-change conditions.


2016 ◽  
Vol 18 (6) ◽  
pp. 1759-1768 ◽  
Author(s):  
Luciano Bosso ◽  
Mirko Di Febbraro ◽  
Gennaro Cristinzio ◽  
Astolfo Zoina ◽  
Danilo Russo

Sign in / Sign up

Export Citation Format

Share Document