scholarly journals Effect of Exhaust Gas Flow and Back Pressure on Urea Dosing Unit and Pipe of SCR in Industrial Diesel Engine

2022 ◽  
pp. 106-113
Author(s):  
Byung-Mo Yang
Author(s):  
Bibhuti B. Sahoo ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Synthesis gas (Syngas), a mixture of hydrogen and carbon monoxide, can be manufactured from natural gas, coal, petroleum, biomass, and even from organic wastes. It can substitute fossil diesel as an alternative gaseous fuel in compression ignition engines under dual fuel operation route. Experiments were conducted in a single cylinder, constant speed and direct injection diesel engine fuelled with syngas-diesel in dual fuel mode. The engine is designed to develop a power output of 5.2 kW at its rated speed of 1500 rpm under variable loads with inducted syngas fuel having H2 to CO ratio of 1:1 by volume. Diesel fuel as a pilot was injected into the engine in the conventional manner. The diesel engine was run at varying loads of 20, 40, 60, 80 and 100%. The performance of dual fuel engine is assessed by parameters such as thermal efficiency, exhaust gas temperature, diesel replacement rate, gas flow rate, peak cylinder pressure, exhaust O2 and emissions like NOx, CO and HC. Dual fuel operation showed a decrease in brake thermal efficiency from 16.1% to a maximum of 20.92% at 80% load. The maximum diesel substitution by syngas was found 58.77% at minimum exhaust O2 availability condition of 80% engine load. The NOx level was reduced from 144 ppm to 103 ppm for syngas-diesel mode at the best efficiency point. Due to poor combustion efficiency of dual fuel operation, there were increases in CO and HC emissions throughout the range of engine test loads. The decrease in peak pressure causes the exhaust gas temperature to rise at all loads of dual fuel operation. The present investigation provides some useful indications of using syngas fuel in a diesel engine under dual fuel operation.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3161 ◽  
Author(s):  
Sangjun Park ◽  
Kyo Lee ◽  
Jungsoo Park

Exhaust gas recirculation (EGR) and high-pressure fuel injection are key technologies for reducing diesel engine emissions in the face of reinforced regulations. With the increasing need for advanced EGR technologies to achieve low-temperature combustion and low emission, the adverse etableffects of EGR must be addressed. One of the main problems is fouling of the EGR cooler, which involves the deposition of particulate matter (PM) due to the thermophoretic force between the cooler wall and flow field. A large amount of deposited PM can reduce the effectiveness of the heat exchanger in the EGR cooler and the de-NOx efficiency. In the present study, the effects of the variables that affect EGR cooler fouling are investigated by a comparison of laboratory-based and engine-based experiments. In the laboratory experiment, a soot generator that could readily provide separate control of the variables was used to generate the model EGR gas. Through control of the soot generator, it was possible to perform a parametric study by varying the particle size, the EGR gas flow rate, and the coolant temperature as the dominant parameters. A decrease in these factors caused an increase in the mass of the deposit and a drop in the effectiveness of the heat exchanger, related to fouling of the EGR cooler. In the engine-based experiment, engine-like conditions were provided to analyze real exhaust gas without a soot generator. Different variables were found to induce fouling of the EGR cooler, and the results of the engine-based experiment differed from those of the laboratory experiment. For example, in the engine-based experiment, a decrease in the EGR gas flow rate did not lead to a more pronounced drop in the effectiveness of the heat exchanger because of the increase in the concentration of PM in the EGR gas. This result shows that the conditions of the engine exhaust gas are different from those of the soot generator.


2021 ◽  
Author(s):  
Patrycja Puzdrowska

The paper discusses the impact of changes in the compression ratio on the operating parameters of a diesel engine, e.g. on the temperature of exhaust gases. It presents the construction of the laboratory test stand, on which experimental measurements were realized. It is characterized how the actual changes of the compression ratio were introduced to the existing engine. The program of experimental investigations taking into account the available test stand and measurement possibilities was described. A statistical and qualitative analysis of the obtained measurement results was made. The use of F statistics of the Fisher-Snedecor distribution was proposed to assess the significance of the effect of compression ratio changes on the specific enthalpy of the exhaust gas stream. The specific enthalpy of exhaust gases was analysed for one cycle of diesel engine work, determined on the basis of the course of quickly varying temperature of exhaust gases. The results of these analyses are discussed and the utilitarian purpose of this type of evaluation in parametric diagnostics of piston engines is presented.


2013 ◽  
Vol 154 (3) ◽  
pp. 79-85
Author(s):  
Agata LENC-BROL ◽  
Jarosław MAMALA

In this paper an analysis of the EGR valve design impact, in particular the outlet diameter, on the gasflow parameters in diesel engine (Z1505) exhaust gas recirculation system ofZetor tractor was made. For this purpose the experimental and simulation studies of gasflow through the valve were carried out. The simulations using Fluent were made. Also distribution of the pressure and velocity vectors in the area of the valve outflow was presented. Analysis of the phenomena occurring in the exhaust area of the EGR valve was made. Also influence of the outlet diameter on the flow characteristics of the EGR valve was determined.


Machines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 239
Author(s):  
Kyeong-Ju Kong

It is necessary to analyze the intake/exhaust gas flow of a diesel engine when turbocharger matching and when installing emission control devices such as exhaust gas recirculation (EGR), selective catalytic reduction (SCR), and scrubbers. Analyzing the intake/exhaust gas flow using a 3D approach can use various analytical models, but it requires a significant amount of time to perform the computation. An approach that combines 1D and 3D is a fast numerical analysis method that can utilize the analysis models of the 3D approach and obtain accurate calculation results. In this study, the flow characteristics of the exhaust gas were analyzed using a 1D–3D coupling algorithm to analyze the unsteady gas flow of a diesel engine, and whether the 1D–3D approach was suitable for analyzing exhaust systems was evaluated. The accuracy of the numerical analysis results was verified by comparison with the experimental results, and the flow characteristics of various shapes of the exhaust system of a diesel engine could be analyzed. Numerical analysis using the 1D–3D approach was able to be computed about 300 times faster than the 3D approach, and it was a method that could be used for research focused on the exhaust system. In addition, since it could quickly and accurately calculate intake/exhaust gas flow, it was expected to be used as a numerical analysis method suitable for analyzing the interaction of diesel engines with emission control devices and turbochargers.


2008 ◽  
Vol 52 (04) ◽  
pp. 239-248
Author(s):  
Yi Cui ◽  
Yilun Zhu ◽  
Kangyao Deng

A steady state and transient simulation model for an underwater diesel engine system, including governor, diesel engine, and pipe systems after turbine, is developed and verified. A two-phase flow of exhaust gas and water at the tail pipe is studied with three-dimensional fluid dynamics calculation. A water flooding criterion for an underwater engine is also given by these models and related experiments. Safe operation ranges of the engine are also studied. The histories of relative engine speed, pressure, and Froude number of the tail pipe exhaust gas under starting and stopping processes are studied. The Froude number of the tail pipe exhaust gas is an oscillating phenomena when the engine is starting, which is likely to cause sea water to flow backward into the tail pipe. The opening of the tongue valve must be controlled according to engine back pressure during the stopping process to prevent sea water flooding on the one hand and high back pressure on the other. The underwater diesel engine operating control strategy can be given on the basis of the research work.


Author(s):  
Ming Zheng ◽  
David K. Irick ◽  
Jeffrey Hodgson

For diesel engines (CIDI) the excessive use of exhaust gas recirculation (EGR) can reduce in-cylinder oxides of nitrogen (NOx) generation dramatically, but engine operation can also approach zones with high instabilities, usually accompanied with high cycle-to-cycle variations and deteriorated emissions of total hydrocarbon (THC), carbon monoxide (CO), and soot. A new approach has been proposed and tested to eliminate the influences of recycled combustibles on such instabilities, by applying an oxidation catalyst in the high-pressure EGR loop of a turbocharged diesel engine. The testing was directed to identifying the thresholds of stable operation at high rates of EGR without causing cycle-to-cycle variations associated with untreated recycled combustibles. The elimination of recycled combustibles using the oxidation catalyst showed significant influences on stabilizing the cyclic variations, so that the EGR applicable limits are effectively extended. The attainability of low NOx emissions with the catalytically oxidized EGR is also evaluated.


Sign in / Sign up

Export Citation Format

Share Document