scholarly journals Estimation for Flexible Weibull Extension-Burr XII Distribution under Adaptive Type-II Progressive Censoring Scheme

Author(s):  
Rania M. Kamal ◽  
Moshira A. Ismail

In this paper, based on an adaptive Type-II progressive censoring scheme, estimation of flexible Weibull extension-Burr XII distribution is discussed. Maximum likelihood estimation and asymptotic confidence intervals of the unknown parameters are obtained. The adaptive Metropolis (AM) method is applied to carry out a Bayesian estimation procedure under symmetric and asymmetric loss functions and calculate the credible intervals. A simulation study is carried out to assess the performance of the estimators. Finally, a real life data set is used for illustration purpose.

2018 ◽  
Vol 47 (1) ◽  
pp. 77-94
Author(s):  
Pradeep Kumar Vishwakarma ◽  
Arun Kaushik ◽  
Aakriti Pandey ◽  
Umesh Singh ◽  
Sanjay Kumar Singh

This paper deals with the estimation procedure for inverse Weibull distribution under progressive type-II censored samples when removals follow Beta-binomial probability law. To estimate the unknown parameters, the maximum likelihood and Bayes estimators are obtained under progressive censoring scheme mentioned above. Bayes estimates are obtained using Markov chain Monte Carlo (MCMC) technique considering square error loss function and compared with the corresponding MLE's. Further, the expected total time on test is obtained under considered censoring scheme.  Finally, a real data set has been analysed to check the validity of the study.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1558
Author(s):  
Ziyu Xiong ◽  
Wenhao Gui

The point and interval estimations for the unknown parameters of an exponentiated half-logistic distribution based on adaptive type II progressive censoring are obtained in this article. At the beginning, the maximum likelihood estimators are derived. Afterward, the observed and expected Fisher’s information matrix are obtained to construct the asymptotic confidence intervals. Meanwhile, the percentile bootstrap method and the bootstrap-t method are put forward for the establishment of confidence intervals. With respect to Bayesian estimation, the Lindley method is used under three different loss functions. The importance sampling method is also applied to calculate Bayesian estimates and construct corresponding highest posterior density (HPD) credible intervals. Finally, numerous simulation studies are conducted on the basis of Markov Chain Monte Carlo (MCMC) samples to contrast the performance of the estimations, and an authentic data set is analyzed for exemplifying intention.


Open Physics ◽  
2017 ◽  
Vol 15 (1) ◽  
pp. 557-565 ◽  
Author(s):  
Hanaa H. Abu-Zinadah

AbstractIn the several fields of industries the product comes from more than one production line, which is required to work the comparative life tests. This problem requires sampling of the different production lines, then the joint censoring scheme is appeared. In this article we consider the life time Pareto distribution with jointly type-II censoring scheme. The maximum likelihood estimators (MLE) and the corresponding approximate confidence intervals as well as the bootstrap confidence intervals of the model parameters are obtained. Also Bayesian point and credible intervals of the model parameters are presented. The life time data set is analyzed for illustrative purposes. Monte Carlo results from simulation studies are presented to assess the performance of our proposed method.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249028
Author(s):  
Ehsan Fayyazishishavan ◽  
Serpil Kılıç Depren

The two-parameter of exponentiated Gumbel distribution is an important lifetime distribution in survival analysis. This paper investigates the estimation of the parameters of this distribution by using lower records values. The maximum likelihood estimator (MLE) procedure of the parameters is considered, and the Fisher information matrix of the unknown parameters is used to construct asymptotic confidence intervals. Bayes estimator of the parameters and the corresponding credible intervals are obtained by using the Gibbs sampling technique. Two real data set is provided to illustrate the proposed methods.


2020 ◽  
Vol 9 (1) ◽  
pp. 47-60
Author(s):  
Samir K. Ashour ◽  
Ahmed A. El-Sheikh ◽  
Ahmed Elshahhat

In this paper, the Bayesian and non-Bayesian estimation of a two-parameter Weibull lifetime model in presence of progressive first-failure censored data with binomial random removals are considered. Based on the s-normal approximation to the asymptotic distribution of maximum likelihood estimators, two-sided approximate confidence intervals for the unknown parameters are constructed. Using gamma conjugate priors, several Bayes estimates and associated credible intervals are obtained relative to the squared error loss function. Proposed estimators cannot be expressed in closed forms and can be evaluated numerically by some suitable iterative procedure. A Bayesian approach is developed using Markov chain Monte Carlo techniques to generate samples from the posterior distributions and in turn computing the Bayes estimates and associated credible intervals. To analyze the performance of the proposed estimators, a Monte Carlo simulation study is conducted. Finally, a real data set is discussed for illustration purposes.


Author(s):  
Tapiwa Ganyani ◽  
Christel Faes ◽  
Niel Hens

This article considers simulation and analysis of incidence data using stochastic compartmental models in well-mixed populations. Several simulation approaches are described and compared. Thereafter, we provide an overview of likelihood estimation for stochastic models. We apply one such method to a real-life outbreak data set and compare models assuming different kinds of stochasticity. We also give references for other publications where detailed information on this topic can be found. Expected final online publication date for the Annual Review of Statistics and Its Application, Volume 8 is March 8, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2020 ◽  
Vol 18 (2) ◽  
pp. 2-13
Author(s):  
Oyebayo Ridwan Olaniran ◽  
Mohd Asrul Affendi Abdullah

A new Bayesian estimation procedure for extended cox model with time varying covariate was presented. The prior was determined using bootstrapping technique within the framework of parametric empirical Bayes. The efficiency of the proposed method was observed using Monte Carlo simulation of extended Cox model with time varying covariates under varying scenarios. Validity of the proposed method was also ascertained using real life data set of Stanford heart transplant. Comparison of the proposed method with its competitor established appreciable supremacy of the method.


Sign in / Sign up

Export Citation Format

Share Document