scholarly journals Nanoparticles: tech trends in healthcare

Author(s):  
Anu Chandran ◽  
Varun Raghavan ◽  
Bhaskaran Chalil ◽  
Kamalasanan . ◽  
C. C. Velayudhan ◽  
...  

Nanotechnology is the use of matter on an atomic, molecular, and supramolecular scale for various purposes. Nanotechnology field of application is very much diverse which includes surface science, organic chemistry, molecular biology, semiconductor physics, energy storage, engineering, microfabrication, and molecular engineering. Its medical application ranges from biological devices, nano-electronic biosensors, and to future biological machines. The main issue nowadays for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials. Lot more functionalities can be added to nanomaterials by interfacing them with biological structures. The size of nanomaterials is similar most biological molecules and so useful for both in vivo and in vitro biomedical research and applications. The integration of nanomaterials with biology had paved path to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications and drug delivery vehicles.

2020 ◽  
Author(s):  
Shatadru Chakravarty ◽  
Jeremy Hix ◽  
Kaitlyn Wieweora ◽  
Maximilian Volk ◽  
Elizabeth Kenyon ◽  
...  

Here we describe the synthesis, characterization and in vitro and in vivo performance of a series of tantalum oxide (TaOx) based nanoparticles (NPs) for computed tomography (CT). Five distinct versions of 9-12 nm diameter silane coated TaOx nanocrystals (NCs) were fabricated by a sol-gel method with varying degrees of hydrophilicity and with or without fluorescence, with the highest reported Ta content to date (78%). Highly hydrophilic NCs were left bare and were evaluated in vivo in mice for micro-CT of full body vasculature, where following intravenous injection, TaOx NCs demonstrate high CT contrast, circulation in blood for ~ 3 h, and eventual accumulation in RES organs; and following injection locally in the mammary gland, where the full ductal tree structure can be clearly delineated. Partially hydrophilic NCs were encapsulated within mesoporous silica nanoparticles (MSNPs; TaOx@MSNPs) and hydrophobic NCs were encapsulated within poly(lactic-co-glycolic acid) (PLGA; TaOx@PLGA) NPs, serving as potential CT-imagable drug delivery vehicles. Bolus intramuscular injections of TaOx@PLGA NPs and TaOx@MSNPs to mimic the accumulation of NPs at a tumor site produce high signal enhancement in mice. In vitro studies on bare NCs and formuated NPs demonstrate high cytocompatibility and low dissolution of TaOx. This work solidifies that TaOx-based NPs are versatile contrast agents for CT.


2020 ◽  
Vol 17 (3) ◽  
pp. 229-245
Author(s):  
Gang Wang ◽  
Junjie Wang ◽  
Rui Guan

Background: Owing to the rich anticancer properties of flavonoids, there is a need for their incorporation into drug delivery vehicles like nanomicelles for safe delivery of the drug into the brain tumor microenvironment. Objective: This study, therefore, aimed to prepare the phospholipid-based Labrasol/Pluronic F68 modified nano micelles loaded with flavonoids (Nano-flavonoids) for the delivery of the drug to the target brain tumor. Methods: Myricetin, quercetin and fisetin were selected as the initial drugs to evaluate the biodistribution and acute toxicity of the drug delivery vehicles in rats with implanted C6 glioma tumors after oral administration, while the uptake, retention, release in human intestinal Caco-2 cells and the effect on the brain endothelial barrier were investigated in Human Brain Microvascular Endothelial Cells (HBMECs). Results: The results demonstrated that nano-flavonoids loaded with myricetin showed more evenly distributed targeting tissues and enhanced anti-tumor efficiency in vivo without significant cytotoxicity to Caco-2 cells and alteration in the Trans Epithelial Electric Resistance (TEER). There was no pathological evidence of renal, hepatic or other organs dysfunction after the administration of nanoflavonoids, which showed no significant influence on cytotoxicity to Caco-2 cells. Conclusion: In conclusion, Labrasol/F68-NMs loaded with MYR and quercetin could enhance antiglioma effect in vitro and in vivo, which may be better tools for medical therapy, while the pharmacokinetics and pharmacodynamics of nano-flavonoids may ensure optimal therapeutic benefits.


2021 ◽  
pp. 1-9
Author(s):  
Etsuo Niki

Reactive oxygen and nitrogen species have been implicated in the onset and progression of various diseases and the role of antioxidants in the maintenance of health and prevention of diseases has received much attention. The action and effect of antioxidants have been studied extensively under different reaction conditions in multiple media. The antioxidant effects are determined by many factors. This review aims to discuss several important issues that should be considered for determination of experimental conditions and interpretation of experimental results in order to understand the beneficial effects and limit of antioxidants against detrimental oxidation of biological molecules. Emphasis was laid on cell culture experiments and effects of diversity of multiple oxidants on antioxidant efficacy.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Edith Jansig ◽  
Stefanie Geissler ◽  
Vera Rieckmann ◽  
Anja Kuenemund ◽  
Benjamin Hietel ◽  
...  

Abstract Therapeutic mRNA delivery has been described for several treatment options, such as vaccination and cancer immunotherapy. However, mRNA delivery has to be accompanied by the development and testing of suitable carrier materials due to the instability of mRNAs in human body fluids. In the present study, we investigated the ability of recently developed Viromers to deliver mRNAs in a classical inflammatory setting. We tested mRNAs coding for active components of preclinical (7ND) and approved (sTNF-RII) biologics, in vitro and in vivo. 7ND is an established blocker of the CCR2 axis, whereas sTNF-RII is the active component of the approved drug Etanercept. Viromer/mRNA complexes were transfected into murine macrophages in vitro. Protein expression was analysed using Luciferase reporter expression and mainly identified in spleen, blood and bone marrow in vivo. 7ND-mRNA delivery led to efficient blockage of monocytes infiltration in thioglycolate-induced peritonitis in mice, underlining the ability of Viromers to deliver a therapeutic mRNA cargo without overt toxicity. Therefore, we propose Viromer-based mRNA delivery as a suitable option for the treatment of inflammatory disorders beyond infusion of biological molecules.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Hisao Haniu ◽  
Naoto Saito ◽  
Yoshikazu Matsuda ◽  
Tamotsu Tsukahara ◽  
Yuki Usui ◽  
...  

Carbon nanotubes (CNTs) are attracting interest in various fields of science because they possess a high surface area-to-volume ratio and excellent electronic, mechanical, and thermal properties. Various medical applications of CNTs are expected, and the properties of CNTs have been greatly improved for use in biomaterials. However, the safety of CNTs remains unclear, which impedes their medical application. Our group is evaluating the biological responses of multiwall CNTs (MWCNTs)in vivoandin vitrofor the promotion of tissue regeneration as safe scaffold materials. We recently showed that intracellular accumulation is important for the cytotoxicity of CNTs, and we reported the active physiological functions CNTs in cells. In this review, we describe the effects of CNTsin vivoandin vitroobserved by our group from the standpoint of tissue engineering, and we introduce the findings of other research groups.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Gwenneg Kerdivel ◽  
Denis Habauzit ◽  
Farzad Pakdel

In all vertebrate species, estrogens play a crucial role in the development, growth, and function of reproductive and nonreproductive tissues. A large number of natural or synthetic chemicals present in the environment and diet can interfere with estrogen signaling; these chemicals are called endocrine disrupting chemicals (EDCs) or xenoestrogens. Some of these compounds have been shown to induce adverse effects on human and animal health, and some compounds are suspected to contribute to diverse disease development. Because xenoestrogens have varying sources and structures and could act in additive or synergistic effects when combined, they have multiple mechanisms of action. Consequently, an important panel ofin vivoandin vitrobioassays and chemical analytical tools was used to screen, evaluate, and characterize the potential impacts of these compounds on humans and animals. In this paper, we discuss different molecular actions of some of the major xenoestrogens found in food or the environment, and we summarize the current models used to evaluate environmental estrogens.


2020 ◽  
Author(s):  
Shatadru Chakravarty ◽  
Jeremy Hix ◽  
Kaitlyn Wieweora ◽  
Maximilian Volk ◽  
Elizabeth Kenyon ◽  
...  

Here we describe the synthesis, characterization and in vitro and in vivo performance of a series of tantalum oxide (TaOx) based nanoparticles (NPs) for computed tomography (CT). Five distinct versions of 9-12 nm diameter silane coated TaOx nanocrystals (NCs) were fabricated by a sol-gel method with varying degrees of hydrophilicity and with or without fluorescence, with the highest reported Ta content to date (78%). Highly hydrophilic NCs were left bare and were evaluated in vivo in mice for micro-CT of full body vasculature, where following intravenous injection, TaOx NCs demonstrate high CT contrast, circulation in blood for ~ 3 h, and eventual accumulation in RES organs; and following injection locally in the mammary gland, where the full ductal tree structure can be clearly delineated. Partially hydrophilic NCs were encapsulated within mesoporous silica nanoparticles (MSNPs; TaOx@MSNPs) and hydrophobic NCs were encapsulated within poly(lactic-co-glycolic acid) (PLGA; TaOx@PLGA) NPs, serving as potential CT-imagable drug delivery vehicles. Bolus intramuscular injections of TaOx@PLGA NPs and TaOx@MSNPs to mimic the accumulation of NPs at a tumor site produce high signal enhancement in mice. In vitro studies on bare NCs and formuated NPs demonstrate high cytocompatibility and low dissolution of TaOx. This work solidifies that TaOx-based NPs are versatile contrast agents for CT.


2009 ◽  
Vol 69 (11) ◽  
pp. 4791-4799 ◽  
Author(s):  
Michi Fuchita ◽  
Andressa Ardiani ◽  
Lei Zhao ◽  
Kinta Serve ◽  
Barry L. Stoddard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document