scholarly journals Detection of Hidden Facial Surface Masking in Stored and Real Time Captured Images: A Deep Learning Perspective in Covid Time

2021 ◽  
Vol 38 (6) ◽  
pp. 1875-1885
Author(s):  
Ruchi Jayaswal ◽  
Manish Dixit

A novel coronavirus has spread over the world and has become an outbreak. This, according to a WHO report, is an infectious disease that aims to spread. As a consequence, taking precautions is the only method to avoid catching this virus. The most important preventive measure against COVID-19 is to wear a mask. In this paper, a framework is designed for face mask detection using a deep learning approach. This paper aims to predict a person having a mask or unmask and also presents a proposed dataset named RTFMD (Real-Time Face Mask Dataset) to accomplish this objective. We have also taken the RFMD dataset from the internet to analyze the performance of system. Contrast Limited Adaptive Histogram Equalization (CLAHE) technique is applied at the time of pre-processing to enhance the visual quality of images. Subsequently, Inceptionv3 model used to train the face mask images and SSD face detector model has been used for face detection. Therefore, this paper proposed a model CLAHE-SSD_IV3 to classify the mask or without mask images. The system is also tested at VGG16, VGG19, Xception, MobilenetV2 models at different hyperparameters values and analyze them. Furthermore, compared the result of the proposed dataset RTFMD with the RFMD dataset. Additionally, proposed approach is compared with the existing approach on Face Mask dataset and RTFMD dataset. The outcomes have obtained 98% test accuracy on this proposed dataset RTFMD while 97% accuracy on the RFMD dataset in real-time.

2017 ◽  
Vol 13 (2) ◽  
pp. 63-75 ◽  
Author(s):  
T. Raghuveera ◽  
S. Vidhushini ◽  
M. Swathi

Real-Time Facial and eye tracking is critical in applications like military surveillance, pervasive computing, Human Computer Interaction etc. In this work, face and eye tracking are implemented by using two well-known methods, CAMSHIFT and RANSAC. In our first approach, a frontal face detector is run on each frame of the video and the Viola-Jones face detector is used to detect the faces. CAMSHIFT Algorithm is used in the real- time tracking along with Haar-Like features that are used to localize and track eyes. In our second approach, the face is detected using Viola-Jones, whereas RANSAC is used to match the content of the subsequent frames. Adaptive Bilinear Filter is used to enhance quality of the input video. Then, we run the Viola-Jones face detector on each frame and apply both the algorithms. Finally, we use Kalman filter upon CAMSHIFT and RANSAC and compare with the preceding experiments. The comparisons are made for different real-time videos under heterogeneous environments through proposed performance measures, to identify the best-suited method for a given scenario.


Author(s):  
Ketki . ◽  
Sonali Gupta ◽  
Vijay Paliwal ◽  
Rachita Mathur ◽  
Deepak K. Mathur

<p class="abstract"><strong>Background: </strong>The novel coronavirus, referred to as SARS-COV 2 causing COVID 19, has become a great health challenge to the mankind. After its origin from Wuhan, China, it spread all over the globe within a short period of time. World Health Organization (WHO) officially declared COVID 19 as pandemic on 11th March, 2020. Aerosoles or droplets are the commonest mode of infection through respiratory tract making it mandatory to wear masks as a preventive measure.</p><p class="abstract"><strong>Methods: </strong>It is a cross-sectional study conducted over patients attending the out patients department of Dermatology. They were observed for presence of dermatosis over the face and categorized according to nature of dermatoses.</p><p class="abstract"><strong>Results:</strong> We observed 385 patients, 200 (52%) patients had new dermatoses and 185 (48%) patients noticed flare of existing dermatoses. The predominant new dermatoses were dermatophytosis, indentations, sweat induced dermatitis, urticaria, pressure urticaria developing with indentations, contact dermatitis to metal and other materials in 49 (24.5%%), 42 (21%), 42 (21%) ,38(19%), 19 (9.5%) and 10 (5%) cases respectively. The flared dermatoses were acne, rosacea , plane warts and molluscum contagiosum in 120 (64.8%), 24 (12.9%), 22 (11.9%) and 17 (9.2%) cases respectively. Koebnerisation of vitiligo and lichen planus was also seen in few subjects.</p><p class="abstract"><strong>Conclusions:</strong> The prolonged use of face mask may cause various infective and non infective facial dermatoses. In the current scenario, it is mandatory to wear face mask as a preventive measure hence it is important to wear the mask properly. However, care of the mask as well as breaks from the mask are important factors to avoid the development of mask associated dermatosis.</p>


Face recognition plays a vital role in security purpose. In recent years, the researchers have focused on the pose illumination, face recognition, etc,. The traditional methods of face recognition focus on Open CV’s fisher faces which results in analyzing the face expressions and attributes. Deep learning method used in this proposed system is Convolutional Neural Network (CNN). Proposed work includes the following modules: [1] Face Detection [2] Gender Recognition [3] Age Prediction. Thus the results obtained from this work prove that real time age and gender detection using CNN provides better accuracy results compared to other existing approaches.


2021 ◽  
Vol 1916 (1) ◽  
pp. 012077
Author(s):  
M Sujaritha ◽  
S Kabilan ◽  
M Manikandan ◽  
S Nanda Kisore
Keyword(s):  

2021 ◽  
Vol 11 (8) ◽  
pp. 3495
Author(s):  
Shabir Hussain ◽  
Yang Yu ◽  
Muhammad Ayoub ◽  
Akmal Khan ◽  
Rukhshanda Rehman ◽  
...  

The spread of COVID-19 has been taken on pandemic magnitudes and has already spread over 200 countries in a few months. In this time of emergency of COVID-19, especially when there is still a need to follow the precautions and developed vaccines are not available to all the developing countries in the first phase of vaccine distribution, the virus is spreading rapidly through direct and indirect contacts. The World Health Organization (WHO) provides the standard recommendations on preventing the spread of COVID-19 and the importance of face masks for protection from the virus. The excessive use of manual disinfection systems has also become a source of infection. That is why this research aims to design and develop a low-cost, rapid, scalable, and effective virus spread control and screening system to minimize the chances and risk of spread of COVID-19. We proposed an IoT-based Smart Screening and Disinfection Walkthrough Gate (SSDWG) for all public places entrance. The SSDWG is designed to do rapid screening, including temperature measuring using a contact-free sensor and storing the record of the suspected individual for further control and monitoring. Our proposed IoT-based screening system also implemented real-time deep learning models for face mask detection and classification. This module classified individuals who wear the face mask properly, improperly, and without a face mask using VGG-16, MobileNetV2, Inception v3, ResNet-50, and CNN using a transfer learning approach. We achieved the highest accuracy of 99.81% while using VGG-16 and the second highest accuracy of 99.6% using MobileNetV2 in the mask detection and classification module. We also implemented classification to classify the types of face masks worn by the individuals, either N-95 or surgical masks. We also compared the results of our proposed system with state-of-the-art methods, and we highly suggested that our system could be used to prevent the spread of local transmission and reduce the chances of human carriers of COVID-19.


2021 ◽  
Vol 13 (12) ◽  
pp. 6900
Author(s):  
Jonathan S. Talahua ◽  
Jorge Buele ◽  
P. Calvopiña ◽  
José Varela-Aldás

In the face of the COVID-19 pandemic, the World Health Organization (WHO) declared the use of a face mask as a mandatory biosafety measure. This has caused problems in current facial recognition systems, motivating the development of this research. This manuscript describes the development of a system for recognizing people, even when they are using a face mask, from photographs. A classification model based on the MobileNetV2 architecture and the OpenCv’s face detector is used. Thus, using these stages, it can be identified where the face is and it can be determined whether or not it is wearing a face mask. The FaceNet model is used as a feature extractor and a feedforward multilayer perceptron to perform facial recognition. For training the facial recognition models, a set of observations made up of 13,359 images is generated; 52.9% images with a face mask and 47.1% images without a face mask. The experimental results show that there is an accuracy of 99.65% in determining whether a person is wearing a mask or not. An accuracy of 99.52% is achieved in the facial recognition of 10 people with masks, while for facial recognition without masks, an accuracy of 99.96% is obtained.


Author(s):  
Enrique Lee Huamaní ◽  
◽  
Lilian Ocares Cunyarachi

Due to the pandemic caused by Covid-19, daily life has changed significantly. For this reason, biosecurity measures have been implemented to prevent the spread of the virus as an effective way to reactivate economic activities. In this sense, the present paper focuses on real-time face detection as a measure of control at the entrance to an entity, thus avoiding the spread of the virus while recognizing the identity of workers despite the use of masks and thus reducing the risk of entry of individuals outside the organization. Therefore, the objective is to contribute to the security of a company through the application of machine learning methodology. The selection of methodology is justified due to the adaptation of the same according to the interests of this project. Consequently, algorithms were used in a progressive manner, obtaining as a result the control system that was intended, since each particularity of the face of the individual was recognized in relation to its corresponding identification. Finally, the results of this article benefit the security of organizations regardless of their field or sector. Keywords— Control, Detection, Facial Recognition, Facial Mask, Face recognition, Machine learning.


2021 ◽  
Vol 9 ◽  
Author(s):  
Sharnil Pandya ◽  
Anirban Sur ◽  
Nitin Solke

The presented deep learning and sensor-fusion based assistive technology (Smart Facemask and Thermal scanning kiosk) will protect the individual using auto face-mask detection and auto thermal scanning to detect the current body temperature. Furthermore, the presented system also facilitates a variety of notifications, such as an alarm, if an individual is not wearing a mask and detects thermal temperature beyond the standard body temperature threshold, such as 98.6°F (37°C). Design/methodology/approach—The presented deep Learning and sensor-fusion-based approach can also detect an individual in with or without mask situations and provide appropriate notification to the security personnel by raising the alarm. Moreover, the smart tunnel is also equipped with a thermal sensing unit embedded with a camera, which can detect the real-time body temperature of an individual concerning the prescribed body temperature limits as prescribed by WHO reports. Findings—The investigation results validate the performance evaluation of the presented smart face-mask and thermal scanning mechanism. The presented system can also detect an outsider entering the building with or without mask condition and be aware of the security control room by raising appropriate alarms. Furthermore, the presented smart epidemic tunnel is embedded with an intelligent algorithm that can perform real-time thermal scanning of an individual and store essential information in a cloud platform, such as Google firebase. Thus, the proposed system favors society by saving time and helps in lowering the spread of coronavirus.


Author(s):  
Ismail Nasri ◽  
Mohammed Karrouchi ◽  
Hajar Snoussi ◽  
Abdelhafid Messaoudi ◽  
Kamal Kassmi

Sign in / Sign up

Export Citation Format

Share Document