scholarly journals Structure and biogenesis of small nucleolar RNAs acting as guides for ribosomal RNA modification.

1999 ◽  
Vol 46 (2) ◽  
pp. 377-389 ◽  
Author(s):  
W Filipowicz ◽  
P Pelczar ◽  
V Pogacic ◽  
F Dragon

Maturation of pre-ribosomal RNA (pre-rRNA) in eukaryotic cells takes place in the nucleolus and involves a large number of cleavage events, which frequently follow alternative pathways. In addition, rRNAs are extensively modified, with the methylation of the 2'-hydroxyl group of sugar residues and conversion of uridines to pseudouridines being the most frequent modifications. Both cleavage and modification reactions of pre-rRNAs are assisted by a variety of small nucleolar RNAs (snoRNAs), which function in the form of ribonucleoprotein particles (snoRNPs). The majority of snoRNAs acts as guides directing site-specific 2'-O-ribose methylation or pseudouridine formation. Over one hundred RNAs of this type have been identified to date in vertebrates and the yeast Saccharomyces cerevisiae. This number is readily explained by the findings that one snoRNA acts as a guide usually for one or at most two modifications, and human rRNAs contain 91 pseudouridines and 106 2'-O-methyl residues. In this article we review information about the biogenesis, structure and function of guide snoRNAs.

2021 ◽  
Vol 7 (2) ◽  
pp. 30
Author(s):  
Laeya Baldini ◽  
Bruno Charpentier ◽  
Stéphane Labialle

Box C/D small nucleolar RNAs (C/D snoRNAs) represent an ancient family of small non-coding RNAs that are classically viewed as housekeeping guides for the 2′-O-methylation of ribosomal RNA in Archaea and Eukaryotes. However, an extensive set of studies now argues that they are involved in mechanisms that go well beyond this function. Here, we present these pieces of evidence in light of the current comprehension of the molecular mechanisms that control C/D snoRNA expression and function. From this inventory emerges that an accurate description of these activities at a molecular level is required to let the snoRNA field enter in a second age of maturity.


2017 ◽  
Vol 474 (2) ◽  
pp. 195-214 ◽  
Author(s):  
Salini Konikkat ◽  
John L. Woolford,

Ribosome biogenesis requires the intertwined processes of folding, modification, and processing of ribosomal RNA, together with binding of ribosomal proteins. In eukaryotic cells, ribosome assembly begins in the nucleolus, continues in the nucleoplasm, and is not completed until after nascent particles are exported to the cytoplasm. The efficiency and fidelity of ribosome biogenesis are facilitated by >200 assembly factors and ∼76 different small nucleolar RNAs. The pathway is driven forward by numerous remodeling events to rearrange the ribonucleoprotein architecture of pre-ribosomes. Here, we describe principles of ribosome assembly that have emerged from recent studies of biogenesis of the large ribosomal subunit in the yeast Saccharomyces cerevisiae. We describe tools that have empowered investigations of ribosome biogenesis, and then summarize recent discoveries about each of the consecutive steps of subunit assembly.


Author(s):  
Witold Filipowicz ◽  
Pawel Pelczar ◽  
Vanda Pogacic ◽  
François Dragon

Cell ◽  
1997 ◽  
Vol 89 (4) ◽  
pp. 565-573 ◽  
Author(s):  
Jingwei Ni ◽  
Amy L Tien ◽  
Maurille J Fournier

1985 ◽  
Vol 8 (3-4) ◽  
pp. 747-755 ◽  
Author(s):  
Harry F. Noller ◽  
Barbara J. Van Stolk ◽  
Danesh Moazed ◽  
Stephen Douthwaite ◽  
Robin R. Gutell

Cell ◽  
1997 ◽  
Vol 89 (5) ◽  
pp. 799-809 ◽  
Author(s):  
Philippe Ganot ◽  
Marie-Line Bortolin ◽  
Tamás Kiss

Sign in / Sign up

Export Citation Format

Share Document