scholarly journals Advanced research directions in gravitational wave detectors

2021 ◽  
Vol 24 (3) ◽  
pp. 28-45
Author(s):  
Ivan P. Ohrymenko ◽  
Nikolai N. Kolchevsky ◽  
Pavel P. Petrov

The general principles of gravitational waves detection are considered in this paper. Current gravitational wave detectors represent modernized Michelson interferometer LIGO-detector. Reduction of vibrations in the system and high stabilization of the reflective mirrors is one of the technical problem of the LIGO. It is proposed to study the features of the LIGO-detector with movable mirrors. The software simulating the operation of the LIGO and providing an opportunity to study its characteristics and capacity is developed and named LIGO-RM. The primary goal of the modelling is to study the signal of the gravitational waves detector with oscillating mirrors. The LIGO-RM contains graphic user interface (GUI) that provides interactive control of mirrors movement nature and monitoring of detector signal change. The software simulates the presence of gravitational wave of a requested type and makes it able to monitor its effect on the operation results of the LIGO interferometer in interactive mode or as a numerical outcome. A range of numerical experiments is conducted and the signals on the detector with and without mirrors oscillations are shown. The results of calculations and a possibility of the registration of the gravitational waves using the LIGO-detector with movable mirrors are discussed.

2019 ◽  
Vol 209 ◽  
pp. 01045
Author(s):  
Fulvio Ricci

We review the present status of the Gravitational wave detectors on the Earth, focusing the attention on the present innovations and the longer term perspectives to improve their sensitivity. Then we conclude mentioning few potential searches of new Physics phenomena to be performed with these detectors and those of the third generation.


2000 ◽  
Vol 09 (03) ◽  
pp. 293-297 ◽  
Author(s):  
D. BUSKULIC ◽  
L. DEROME ◽  
R. FLAMINIO ◽  
F. MARION ◽  
L. MASSONET ◽  
...  

A new generation of large scale and complex Gravitational Wave detectors is building up. They will produce big amount of data and will require intensive and specific interactive/batch data analysis. We will present VEGA, a framework for such data analysis, based on ROOT. VEGA uses the Frame format defined as standard by GW groups around the world. Furthermore, new tools are developed in order to facilitate data access and manipulation, as well as interface with existing algorithms. VEGA is currently evaluated by the VIRGO experiment.


2005 ◽  
Vol 13 ◽  
pp. 30-33
Author(s):  
David E McClelland

AbstractWithin the next decade giant laser interferometers should detect gravitational waves. Here we present an overview of these instruments including both ground and spaced based antennae.


2020 ◽  
Vol 35 (02n03) ◽  
pp. 2040020
Author(s):  
Ivan S. Ferreira ◽  
C. Frajuca ◽  
Nadja S. Magalhaes ◽  
M. D. Maia ◽  
Claudio M. G. Sousa

Using the observational properties of Einstein’s gravitational field it is shown that a minimum of four non-coplanar mass probes are necessary for a Michelson and Morley interferometer to detect gravitational waves within the context of General Relativity. With fewer probes, some alternative theories of gravitation can also explain the observations. The conversion of the existing gravitational wave detectors to four probes is also suggested.


Author(s):  
J. Steinlechner

Gravitational waves are detected by measuring length changes between mirrors in the arms of kilometre-long Michelson interferometers. Brownian thermal noise arising from thermal vibrations of the mirrors can limit the sensitivity to distance changes between the mirrors, and, therefore, the ability to measure gravitational-wave signals. Thermal noise arising from the highly reflective mirror coatings will limit the sensitivity both of current detectors (when they reach design performance) and of planned future detectors. Therefore, the development of coatings with low thermal noise, which at the same time meet strict optical requirements, is of great importance. This article gives an overview of the current status of coatings and of the different approaches for coating improvement. This article is part of a discussion meeting issue ‘The promises of gravitational-wave astronomy’.


2019 ◽  
Vol 28 (14) ◽  
pp. 1944020 ◽  
Author(s):  
S. Shankaranarayanan

General Relativity is a hugely successful description of gravitation. However, both theory and observations suggest that General Relativity might have significant classical and quantum corrections in the Strong Gravity regime. Testing the strong field limit of gravity is one of the main objectives of the future gravitational wave detectors. One way to detect strong gravity is through the polarization of gravitational waves. For quasi-normal modes of black-holes in General Relativity, the two polarization states of gravitational waves have the same amplitude and frequency spectrum. Using the principle of energy conservation, we show that the polarizations differ for modified gravity theories. We obtain a diagnostic parameter for polarization mismatch that provides a unique way to distinguish General Relativity and modified gravity theories in gravitational wave detectors.


1995 ◽  
Vol 48 (6) ◽  
pp. 953 ◽  
Author(s):  
David E McClelland

Recycling refers to optical techniques used in laser interferometers to enhance their signal response for a given input power. Driven by the quest to detect gravitational waves using interferometers, a host of configurations have been proposed over the last ten years. Here, these techniques are summarised, and their tolerance to wavefront distortion considered along with their applicability to long and mid baseline laser interferometers.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Soubhik Kumar ◽  
Raman Sundrum ◽  
Yuhsin Tsai

Abstract Cosmological phase transitions in the primordial universe can produce anisotropic stochastic gravitational wave backgrounds (GWB), similar to the cosmic microwave background (CMB). For adiabatic perturbations, the fluctuations in GWB follow those in the CMB, but if primordial fluctuations carry an isocurvature component, this need no longer be true. It is shown that in non-minimal inflationary and reheating settings, primordial isocurvature can survive in GWB and exhibit significant non-Gaussianity (NG) in contrast to the CMB, while obeying current observational bounds. While probing such NG GWB is at best a marginal possibility at LISA, there is much greater scope at future proposed detectors such as DECIGO and BBO. It is even possible that the first observations of inflation-era NG could be made with gravitational wave detectors as opposed to the CMB or Large-Scale Structure surveys.


Sign in / Sign up

Export Citation Format

Share Document