scholarly journals Chemical Variations of Thermally Modified Wild-Grown Bambusa Vulgaris Schrad.Ex J.C. Wendl from Nigeria

Author(s):  
Olajide O B ◽  
Ogunsanwo O Y ◽  
Aguda L O ◽  
Oriire LT

Determining the variation of chemical properties of thermally treated Bambusa vulgaris is important to provide the information of the responses of the chemical constituents to the bamboo modification against biodegradation. This research was therefore conducted to determine the chemical properties of thermally modified Bambusa vulgaris. Two hundred and seventy (30 x 2 x 0.5 cm) bamboo strips dimension were thermally modified in a heat-chamber at 100, 110, 120, 130 and 140 °C each, for 10, 20 and 30 minutes, under constant pressure (220 N/m2) in factorial arrangement in completely randomised design with 5 replicates. Unmodified strips served as control. Chemical characteristics (cellulose, hemicellulose, lignin and ash contents) were determined using standard procedures. The mean variation range of the control to 140°C/30 minutes of the thermally modified samples is as follows; the cellulose value ranged from 46.46±0.11% to 42.19±0.18%, hemicellulose from 35.59±0.10% to 31.80±0.01%, lignin from 29.11±0.12% to 26.17±0.13%, ash from 0.92±0.02% to 0.63±0.01%; the study also revealed that there were decrease in each chemical constituent value varies from a lower to a higher temperature and time regime proportionally except in the lignin content. Increase in temperature and time of thermal modification reduced the chemical characteristics of Bambusa vulgaris which resulted to reduction in the level of sugar contents (cellulose) of bamboo which enables it to be less attractive to both fungi and termite attack hence extending the service life of bamboo in use.

1969 ◽  
Vol 37 (3) ◽  
pp. 224-227
Author(s):  
George N. Wolcott

Neither hardness nor high lignin content of a wood prevent its being eaten by dry-wood termites. Immunity from attack of so-called termite-resistant woods is due to the presence of some specific chemical constituent, such as tectoquinone in East Indian teak, in comparatively small amounts which causes it to be toxic or unpalatable to the insects. This substance extracted from the wood may be used as an insecticide, like commercial Ryania from Ryania speciosa, or for impregnating termite-susceptible woods to make them immune to termite attack. Conrado Asenjo of the local School of Medicine is working on the extractives of West Indian mahogany.


2021 ◽  
Vol 13 (1) ◽  
pp. 164-176
Author(s):  
Berhe Hailu ◽  
Samuel Estifanos

This paper investigates the effects of gypsum powder from the gypsum plant in Adigudem on chemical properties of soil as well as the yield of two major crops, wheat (Triticum aestivum) and barley (Hordeum vulgare). Three mixes of 10kg of soil with 0%, 10%, 30%, and 50% proportion of gypsum powder were used for pot experiments under glasshouse conditions at Mekelle University. One bulk soil sample was collected from a spot at 4 km from the eastern side of the plant. The chemical concentration of major elements Ca, K, Na, Mg, and Mn, and trace elements, Cd, Zn, Cu, Pb, Cr, and Fe in soil and plant parts were determined using an Atomic absorption spectrometer as well as NO3, PO4 and SO4 using UV-spectrometer. The results suggest that the gypsum powder enhances metals and anion content in soil and in crop parts compared to the control sample. The chemical constituents in soil and crop parts showed negligible variation with increasing proportions of gypsum powder. Gypsum loaded Ca, SO4, Mn, and Pb onto the soil, which exhibited higher Mg, Cu, Mo, Cd, NO3, and PO4 but the comparable concentrations of Fe, K, Zn, and Cr in decreasing order. However, a direct relationship was noted in chemical constituent loadings along the pathway:  powder-soil-crop in a similar fashion in the three mixes. Factor analyses revealed that wheat parts have a higher accumulation of nutrients than the barley parts with higher content in its growth soil blends.  As an extension of this research, the in-situ investigation is recommended to assess the direct impact of the gypsum powder emitted over the soil and crops.


2019 ◽  
Vol 4 (1) ◽  
pp. 32-36
Author(s):  
Amsalu Tolessa ◽  
Fikremariam Haile ◽  
Abraham Dilnesa ◽  
Buzayehu Desisa ◽  
Tegene Tantu ◽  
...  

This paper studied the chemical composition of cultivated 3, 4 and 5 year-old highland bamboo (Y. alpina) which were classified into three position (top, medium and bottom) to determined the main compositions especially cellulose, lignin, extractive and ash content. From all culms representative samples were converted to the required size of wood chips to prepared sample for chemical testing. Then the specimens prepared from bottom, middle and top portions for the three ages were used to determine the chemical properties in accordance to American Society for Testing and Materials (ASTM) standards except for cellulose test determined according to Kurschner and Hoffer method. All parameters in the experiment were expressed by percent based on dry basis. From this research, we have found small but significant increases in mean cellulose content from the base to the top of the culm at all three ages. The lignin content in Y. alpina species of bamboo is in the ranged of 23.04 to 30.03%. The mean values of the chemical constituents in 3, 4 and 5- year-old culms were 51.83, 54.94 and 49.78% for cellulose content, 28.28, 24.99 and 24.53% for lignin content, 7.8, 10.09, and 9.54% for alcohol-toluene extractive, respectively. In general, the comprehensive knowledge of the chemical components in the bamboo species will facilitate the use of the materials in the forestry industrial sector and help to enhance their utilization in the chemical and bio-chemical related industry.


2019 ◽  
Vol 24 (2) ◽  
pp. 323-335
Author(s):  
Gabriela Batista de Farias ◽  
Jean Lucas Da Silva Rodrigues ◽  
Maria Nilce De Sousa Ribeiro ◽  
Lyege Oliveira Magalhães ◽  
Antonio Gilberto Ferreira ◽  
...  

The Babassu nut (Orbignya phalerata Mart.) mesocarp is traditionally transformed to flour and consumed in some Brazilian areas for its attributed medicinal activity; however, its chemical properties remain to be elucidated. The present work aimed at analyzing the babassu mesocarp phytochemical constituents. Babassu nut samples were collected in the Brazilian Amazon, and their mesocarps were prepared and macerated in different solvents. The chromatographic fractionation of selected methanol extracts yielded three fractions, A-5, A-6, and B-1 that were characterized with high resolution methods. Fraction A-5 was characterized through GC/MS as a fatty acid mixture with predominance of eicosanoic (38.67 %) and 11-octadecanoic (21.71  %) acids. Fraction A-6 was characterized by the presence of three phytosteroids (32.02 %), sesquiterpene (nerolidol; 24.89 %), and diterpene (17-acetoxy-19-kauranal; 15.17 %). The 1H and 13C NMR spectra on fraction A-6 showed characteristic chemical shifts for its compounds. Compound B-1 was identified as ergostanol-3-benzoate based on NMR experiments in one and two dimensions. These results constitute the first identification of babassu mesocarp chemical constituents in 1 and 2-dimensions, paving the way to understanding its role in popular medicine.


2016 ◽  
Vol 51 (4) ◽  
pp. 307-312 ◽  
Author(s):  
M Mostafizur Rahman ◽  
S Siddiqua ◽  
F Akter ◽  
M Sarwar Jahan ◽  
MA Quaiyyum

Pulp property of a lignocellulosic material depends upon its morphological characteristics and chemical constituents it. Shabuj Pat (CVL-1) variety from Corchorus capsularis and BJRI Tossa Pat 4 (O-72) and BJRI Tossa Pat 5 (O-795) varieties from Corchorus olitorius of jute are mostly grown in Bangladesh. This study deals on morphological and chemical properties of these three varieties of jute stick to assess their suitability for pulp production. The results were significantly differed among the varieties and within the variety. The ?-cellulose content was almost the same in the variety of CVL-1 and O-795. In the same variety, the middle portion contained the largest amount of alpha-cellulose and the top portion contained the lowest. Klason lignin content varied from 24.2 to 26.8%. Fibre length was significantly same for all the three jute sticks but the width and slenderness ratios were different. Pulp yield in soda anthraquinone process was nearly the same in all these varieties around 44% at kappa number 15.Bangladesh J. Sci. Ind. Res. 51(4), 307-312, 2016


Author(s):  
Nithyakalyani K

Ficus benghalensis is one of those taboo plants in India, which was claimed to be possessed and have weird effects on human health. Apart from this ficus species has a great variety of chemical constituents and an abundant amount of antioxidants. Drying is the most critical stage of improving the activity or preventing the loss of chemical components from a drug. There is another stage of ensuring high chemical constituent content in the plant and that is the extraction procedure. So the point of focus in the current research is to find the effect of extraction method and drying on the anti-inflammatory potential of the plant. The result of the extraction method and drying method of the plant was investigated and found that the ultrasound-assisted extraction of the shade dried leaves was found to give the highest yield of flavonoids and activity.


Holzforschung ◽  
2002 ◽  
Vol 56 (1) ◽  
pp. 51-59 ◽  
Author(s):  
P. Widsten ◽  
J.E. Laine ◽  
P. Qvintus-Leino ◽  
S. Tuominen

Summary The present paper aims at elucidating the effect of high-temperature defibration at different temperatures on the bulk and surface chemical properties of defibrated birch, aspen and eucalypt. The results indicate that defibration of these hardwoods results in partial depolymerization of fiber lignin via (homolytic) cleavage of interunit alkyl-aryl (β-O-4) ether bonds. This increases the phenolic hydroxyl content and produces relatively stable (phenoxy) radicals. Syringyl-type lignin is more extensively depolymerized than guaiacyl-type lignin. Defibration generates water-extractable material, which is enriched in hemicellulose-derived carbohydrates and has a substantial content of aromatic compounds rich in phenolic hydroxyl groups. The amount of water-extract and the extent of lignin interunit ether bond cleavage increase with an increase in defibration temperature. The differences between various hardwood species in this respect are small. The surface chemical composition of the fibers differs considerably from their bulk composition, but is not significantly influenced by variations in defibration temperature. Lipophilic extractives cover a large portion of the fiber surface, while the lignin content of lipophilic extractives-free fiber surfaces is 2–3 times as high as the bulk lignin content of the fibers.


2012 ◽  
Vol 36 (6) ◽  
pp. 1163-1172 ◽  
Author(s):  
María Graciela Aguayo ◽  
Regis Teixeira Mendonça ◽  
Paulina Martínez ◽  
Jaime Rodríguez ◽  
Miguel Pereira

Tension (TW) and opposite wood (OW) of Eucalyptus globulus trees were analyzed for its chemical characteristics and Kraft pulp production. Lignin content was 16% lower and contained 32% more syringyl units in TW than in OW. The increase in syringyl units favoured the formation of β-O-4 bonds that was also higher in TW than in OW (84% vs. 64%, respectively). The effect of these wood features was evaluated in the production of Kraft pulps from both types of wood. At kappa number 16, Kraft pulps obtained from TW demanded less active alkali in delignification and presented slightly higher or similar pulp yield than pulps made with OW. Fiber length, coarseness and intrinsic viscosity were also higher in tension than in opposite pulps. When pulps where refined to 30°SR, TW pulps needed 18% more revolutions in the PFI mill to achieve the same beating degree than OW pulps. Strength properties (tensile, tear and burst indexes) were slightly higher or similar in tension as compared with opposite wood pulps. After an OD0(EO)D1 bleaching sequence, both pulps achieved up to 89% ISO brightness. Bleached pulps from TW presented higher viscosity and low amount of hexenuronic acids than pulps from OW. Results showed that TW presented high xylans and low lignin content that caused a decrease in alkali consumption, increase pulp strength properties and similar bleaching performance as compared with pulps from OW.


2008 ◽  
Vol 5 (4) ◽  
pp. 1073-1084 ◽  
Author(s):  
L. Deguillaume ◽  
M. Leriche ◽  
P. Amato ◽  
P. A. Ariya ◽  
A.-M. Delort ◽  
...  

Abstract. This paper discusses the influence of primary biological aerosols (PBA) on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.


2016 ◽  
Vol 8 (3) ◽  
pp. 1615-1617
Author(s):  
Jyoti Prabha Bishnoi ◽  
Rakesh Gehlot ◽  
S. Siddiqui

Ascorbic acid and total phenol in frozen aonla pulp on zero day of storage was found to be 365.5 mg/100g and 2.1 mg/g while in dehydrated aonla pulp it was 2.3 mg/100mg and 14.7 mg/g which was found to decrease with the increase in storage duration. However, significant increase (CD at 5% Level) in total soluble solids (TSS) and non-enzymatic browning was noticed with the advancement in storage duration. The decrease and increase in physico-chemical characteristics were more significant in dehydrated aonla pulp as compared to frozen aonla pulp. Mean score for sensory attributes of dehydrated aonla pulp at zero month of storage was fairly less than frozen aonla pulp. Moreover, there was more significant decrease in value of sensory attributes of dehydrated aonla pulp during six months storage period compared to frozen aonla pulp. Thus, present study was first in its kind to determine and compare chemical composition and overall acceptability of frozen and dehydrated aonla pulp obtained from aonla fruits cv. Chakaiya during storage for optimizing there use in further development of value added aonla product.


Sign in / Sign up

Export Citation Format

Share Document