scholarly journals The Protective Effect of Celecoxib on CA1 Hippocampal Neurons and Oxidative Stress in a Rat Model of Parkinson’s Disease

2019 ◽  
Author(s):  
Maryam Sarbishegi ◽  
Hamidreza Mahmoudzadeh-sagheb ◽  
Zahra Heidari ◽  
Farzaneh Baharvand

Abstract- Several studies point to an important role of neuroinflammation in Parkinson's disease (PD). Cognitive and memory impairments have been known in the early stages of PD. In the present study, we examined the effects of celecoxib (CLX), a selective inhibitor of cyclooxygenase-2 (COX-2), on hippocampus cell loss, passive avoidance memory and antioxidant status in a rat model of PD. We used the subcutaneous injection of 2.5 mg/kg/48h rotenone (ROT) for 4 weeks for induction of PD in a male Wistar rat. Animals were randomized to 4 groups (n=12): Control, sham, PD and PD+CLX group that receive celecoxib (20 mg/kg/day) for 4 weeks. Passive avoidance memory evaluated. We also determined the protective effect of CLX on a number of CA1 neurons in Nissl and TUNEL staining. Total antioxidant capacity (TAC) and malondialdehyde (MDA) a marker of lipid peroxidation in hippocampus assessed. Our findings indicated administration of CLX increase the passive avoidance memory (P<0.05), and by a decrease in apoptosis caused an increase in viable pyramidal neurons in CA1 hippocampus (P<0.01). On the other hand, CLX markedly reduced MDA level and increased TAC in the hippocampus of the PD model animal (P<0.05). It seems CLX with anti-inflammatory and antiapoptotic effect could prevent neurons loss and memory impairment which induced in PD.

2018 ◽  
Vol 76 (2) ◽  
pp. 71-77 ◽  
Author(s):  
Hossein Haddadi ◽  
Ziba Rajaei ◽  
Hojjatallah Alaei ◽  
Somayeh Shahidani

ABSTRACT The present study investigated the effects of carvacrol on motor and memory deficits as well as hyperalgesia in the 6-OHDA-lesioned rat model of Parkinson's disease. The animals were subjected to unilateral microinjection of 6-OHDA into the medial forebrain bundle and treated with carvacrol (25, 50 and 100 mg/kg, ip) for six weeks after surgery. The 6-OHDA-lesioned rats showed contralateral rotations towards the lesion side, which was accompanied by learning and memory deficits in a passive avoidance test and a decrease in tail withdrawal latency in a tail flick test at the end of week 6. The results also showed that treatment with carvacrol at a dose of 25 mg/kg ameliorated memory deficits, with no effect on rotations and hyperalgesia in lesioned rats. In conclusion, carvacrol improves memory impairments in rats with Parkinson's disease; therefore, it may serve as an adjunct therapy for the alleviation of memory deficits in Parkinson's disease patients.


2003 ◽  
Vol 26 (2) ◽  
pp. 143-151 ◽  
Author(s):  
Khan Shoeb Zafar ◽  
Almas Siddiqui ◽  
Iqbal Sayeed ◽  
Muzamil Ahmad ◽  
Sofiyan Saleem ◽  
...  

2020 ◽  
Vol 716 ◽  
pp. 134652 ◽  
Author(s):  
Abhijeet Parkhe ◽  
Pathik Parekh ◽  
Lakshmi Vineela Nalla ◽  
Nishant Sharma ◽  
Monika Sharma ◽  
...  

2003 ◽  
Vol 84 (3) ◽  
pp. 438-446 ◽  
Author(s):  
Khan Shoeb Zafar ◽  
Almas Siddiqui ◽  
Iqbal Sayeed ◽  
Muzamil Ahmad ◽  
Sofian Salim ◽  
...  

2015 ◽  
Vol 11 (2) ◽  
pp. 223-230 ◽  
Author(s):  
Seung Yeop Baek ◽  
Na Rae Lee ◽  
Da Hye Kim ◽  
Ayoung Gu ◽  
Seong Yeol Kim ◽  
...  

2017 ◽  
Vol 43 (6) ◽  
pp. 2226-2241 ◽  
Author(s):  
Yun-Liang Wang ◽  
Bo Ju ◽  
Yu-Zhen Zhang ◽  
Hong-Lei Yin ◽  
Ya-Jun Liu ◽  
...  

Background/Aims: The study aimed to investigate the protective effect of curcumin against oxidative stress-induced injury of Parkinson’s disease (PD) through the Wnt/β-catenin signaling pathway in rats. Methods: The successfully established PD rat models and normal healthy rats were randomly assigned into the 6-hydroxydopamine (6-OHDA), the curcumin (Cur) and the control groups. Immunohistochemistry was used to detect the positive expression of tyrosine hydroxylase (TH), dopamine transporter (DAT) and glial fibrillary acidic protein (GFAP). Deutocerebrum primary cells were extracted and classified into the control, 6-OHDA, Cur (5, 10, 15 µmol/L), Dickkopf-1 (DKK-1) and Cur + DKK-1 groups. MTT assays, adhesion tests and TUNEL staining were used to assess cell viability, adhesion and apoptosis, respectively. Western blotting and qRT-PCR were used to examine the protein and mRNA expressions of Wnt3a and β-catenin and the c-myc and cyclinD1 mRNA expressions. Results: TH and DAT expressions in the Cur group were elevated and GFAP was reduced compared with the 6-OHDA group. Curcumin enhanced viability, survival and adhesion and attenuated apoptosis of deutocerebrum primary cells by activating the Wnt/β-catenin signaling pathway. Higher Wnt3a and β-catenin mRNA and protein expressions and c-myc and cyclinD1 mRNA expressions, enhanced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) contents, decreased malondialdehyde (MDA) content and elevated mitochondrial membrane potential (∆ψm) were found in the 10 and 15 µmol/L Cur groups compared with the 6-OHDA group. However, opposite tendencies were found in the Cur + DKK-1 group compared to the 10 µmol/L Cur group. Conclusion: This study suggests that curcumin could protect against oxidative stress-induced injury in PD rats via the Wnt/β-catenin signaling pathway.


2021 ◽  
Vol 19 (12) ◽  
pp. 2565-2570
Author(s):  
Binbin Zhang ◽  
Jiankuan Shi ◽  
Lei Chang ◽  
Hong Wang ◽  
Yaping Wang ◽  
...  

Purpose: To determine the effect of bacoside-A on Parkinson's disease (PD) in a rat model, and elucidate its mechanism of action.Methods: A rat model of PD was established by administration of 5 µL of 6-hydroxydopamine in ascorbic acid (0.1 %). Measurement of serum levels of inflammatory factors was carried out using enzyme-linked immunosorbent assay (ELISA) kits. Western blotting was used to assay Bax, cytochrome c and Bcl-2 in rat hippocampus.Results: Bacoside-A treatment significantly reduced PD-induced high turning values in rats (p < 0.05). Treatment with bacoside-A reversed PD-mediated suppression of serum activities of CAT and glutathione peroxidase (GPx). In bacoside-A-treated PD rats, dose-dependent suppression of acetylcholinesterase (AChE) and inducible nitric oxide synthase (iNOS) activities were observed (p < 0.05). Bacoside-A-treated PD rats significantly (p < 0.018) reduced interleukin (IL)-1β and IL-6 levels. Treatment of PD rats with bacoside-A effectively reduced levels of tumor necrosis factor (TNF)-α, NF-κB p65, (COX)-2 and p53 protein, and also reversed up-regulations of Bax, cytochrome C, caspase-3 and caspase-9.Conclusion: Bacoside-A exhibits a protective effect against Parkinson disease-induced oxidative damage and neuronal degeneration in rats through downregulation of iNOS, AChE, inflammatory cytokines and pro-apoptotic proteins. Therefore, bacoside-A has potentials for use in the management of Parkinson disease. Keywords: Parkinson disease, Neuroprotective, Pro-apoptotic, Cytokines, Neurotoxicity


Sign in / Sign up

Export Citation Format

Share Document