scholarly journals Partial purification, characterization and immobilization of a novel lipase from a native isolate of Lactobacillus fermentum

Author(s):  
Foruzan Fathi ◽  
Rouha Kasra-Kermanshahi ◽  
Zahra Moosavi-Nejad ◽  
Elahe Mobarak Qamsari

Background and Objectives: Due to the widespread use of lipase enzymes in various industries, finding native lipase pro- ducing microorganisms is of great value and importance. In this study, screening of lipase-producing lactobacilli from native dairy products was performed. Materials and Methods: Qualitative evaluation of lipolytic activity of lipase-producing lactobacilli was performed in differ- ent media containing olive oil. A clear zone observation around the colonies indicated the lipolytic activity. The strain with the highest enzymatic activity was identified. Determination of optimal pH and temperature of lipase activity was measured by spectrophotometry using p-nitrophenyl acetate (ρ-NPA) substrate. Partial purification of lipase enzyme was performed using 20-90% saturation ammonium sulfate. Eventually, lipase was immobilized by physical adsorption on chitosan beads. Results: Among screened lipolytic bacterial strains, one sample (5c isolate) which showed the highest enzymatic activity (5329.18 U/ml) was close to Lactobacillus fermentum. During characterization, the enzyme showed maximum activity in Tris-HCl buffer with pH 7, while remaining active over a temperature range of 5°C to 40°C. The results of the quantitative assay demonstrated that the fraction precipitated in ammonium sulfate at 20% saturation has the highest amount of lipolytic activity, with a specific activity of 22.0425 ± 3.6 U/mg. Purification folds and yields were calculated as 8.73 and 44%, respec- tively. Eventually, the enzyme was immobilized by physical adsorption on chitosan beads with a yield of 56.21%. Conclusion: The high efficiency of enzyme immobilization on chitosan beads indicates the suitability of this method for long-term storage of new lipase from native 5c isolate.

2019 ◽  
Vol 16 (31) ◽  
pp. 692-703
Author(s):  
Aline HAAS ◽  
Cleiton VAZ ◽  
Aniela Pinto KEMPKA

Peroxidases are enzymes that catalyze the oxidation of various substrates, maintaining their enzymatic activity in wide ranges of pH and temperatures. These enzymes are used in processes for the degradation of dyes and phenolic compounds. Peroxidases are present in the tissues of several plants, and the search for new sources of this enzyme is necessary. This literature review aims to compile information about the extraction and/or purification of peroxidases contained in different plant tissues, presenting extraction methods, purification processes, enzymatic activities and their increments, according to the chemical and physical processes applied. Several plant sources can be raw material to obtain these enzymes, through different forms of extraction, where the processes of comminution predominate in the presence of buffer solution. For partial purification, are used precipitation with solvents (acetone and ethanol) and salts (ammonium sulfate) and centrifugation. For purification, chromatographic processes are used, in which molecular exclusion and affinity chromatography are prominent. It is concluded that there is a wide range of possibilities for obtaining the enzyme peroxidase from plants, with variability in the enzymatic activity when different extraction methods are applied. The purification methods used provide increases in the specific activity of the peroxidases.


Reproduction ◽  
2002 ◽  
pp. 675-681 ◽  
Author(s):  
P Cetica ◽  
L Pintos ◽  
G Dalvit ◽  
M Beconi

Little is known about the metabolic profile of cumulus-oocyte complexes (COCs) during maturation. The aim of this study was to determine the differential participation of enzymatic activity in cumulus cells and the oocyte during in vitro maturation of bovine oocytes, by measuring the activity of key enzymes involved in the regulation of glycolysis (phosphofructokinase), the pentose phosphate pathway (glucose-6-phosphate dehydrogenase) and lipolysis (lipase). COCs were matured in medium 199 plus 10% (v/v) steer serum for 22-24 h at 39 degrees C in 5% CO(2):95% humidified air. Phosphofructokinase, glucose-6-phosphate dehydrogenase and lipase activities were measured in immature and in vitro matured COCs, denuded oocytes and cumulus cells, respectively. Phosphofructokinase and glucose-6-phosphate dehydrogenase activities (enzymatic units) remained constant during in vitro maturation of COCs, but there was a significant decrease in lipase activity (units) (P < 0.05), as activity in cumulus cells decreased significantly (P < 0.05). For the three enzymes studied, enzyme activity (units) remained unchanged in the oocyte during in vitro maturation. Specific activity increased in the oocyte (P < 0.05) and decreased in cumulus cells as a result of maturation (P < 0.05). In cumulus cells, phosphofructokinase was the most abundant of the three enzymes followed by glucose-6-phosphate dehydrogenase and then lipase (P < 0.05), whereas in the denuded oocyte this order was reversed (P < 0.05). Thus, the metabolism of cumulus cells is adapted to control the flow of metabolites toward the oocyte, which maintains its enzymatic activity even when dissociated from cumulus cells during maturation. The high activity of phosphofructokinase in cumulus cells indicates that glucose is metabolized mainly via the glycolytic pathway in these cells. The greater relative activity of glucose-6-phosphate dehydrogenase recorded in the oocyte indicates that glucose uptake could be directed mainly toward the pentose phosphate pathway. The marked lipolytic activity concentrated in the oocyte indicates an active participation in lipid catabolism during maturation.


2017 ◽  
Vol 21 (1) ◽  
pp. 56
Author(s):  
Ayu Ashari Achmad ◽  
M. Saifur Rohman ◽  
Irfan D. Prijambada

In this work, we have reported an enzymatic activity and biochemical properties of extracellular proteases from Chromohalobacter salexigens BKL5 and Micrococcus luteus 11A. C. salexigens BKL5 and M. luteus 11A were previously isolated from Bledug Kuwu mud volcano and dietary industry wastewater treatment, respectively. Both bacterial strains were able to produce extracellular proteases, when grown on minimal agar medium supplemented with 1% of skim milk. Proteolytic indexes of C. salexigens BKL5 and M. luteus 11A were 2.5±0.14 and 2.9±0.42, respectively. Both extracellular proteases exhibited optimum enzymatic activity at pH 7, with specific activity of C. salexigens BKL5 was 13.3% higher than that of M. luteus 11A. Optimum temperature for enzymatic activity of both proteases was 45°C. Metal cofactor preferences assay showed that extracellular protease from C. salexigens BKL5 preferred Zn2+, meanwhile extracellular protease from M. luteus 11A mainly preferred Ca2+ ion. Metal cofactor preferences assay also suggested that crude extracellular protease from C. salexigens BKL5 was categorized as metalloprotease, meanwhile crude extracellular protease of M. luteus 11A was common neutral protease. The enzymatic stability assay against various salt concentrations showed that crude extracellular protease from C. salexigens BKL5 was more stable than that of M. luteus 11A.


1977 ◽  
Author(s):  
Mingjien Chien ◽  
Robert H. Yue ◽  
Menard M. Gertler

A naturally occurring heparin inhibitor has been detected in the mucosa of the fresh hog small intestine and has been partially purified. After the homogenized mucosa was extracted with Tris buffer overnight (3°) and the resulting supernatant was fractionated with ammonium sulfate, a large quantity of antiheparin activity was detected in the ammonium sulfate precipitate. This precipitate contains antiheparin activity with a specific activity of 0. 68 unit/mg of protein. Therefore, each hog small intestine contains an amount of this inhibitor enough to inhibit approximately 20, 000 units of heparin. Further purification of this heparin inhibitor was carried out by the technique of heparin affinity chromatography (covalently linked the heparin by the cyanogen bromide procedure). Eluted by a controlled NaCl and buffered gradient at 3°, the chromatogram contains a major peak and a minor peak. Antiheparin activity was located in the minor peak and has a specific activity of 9·7 units/mg of protein. Thus, we have achieved a 14-fold purification of this heparin inhibitor. This partially purified protein inhibits heparin stoichiometrically. Further experiments to purify this heparin inhibitor are in progress. This naturally occurring heparin inhibitor probably has an important biological function in balancing the action of heparin which is an important factor in maintaining Mood fluidity.


1979 ◽  
Vol 41 (03) ◽  
pp. 567-575 ◽  
Author(s):  
Menard M Gertler ◽  
Mingjien Chien ◽  
Robert H Yue

SummaryA natural occurring heparin inhibitor was detected and was partially purified from the mucosa of hog small intestine. The mucosa was homogenized and was extracted overnight in 0.15 M NaCl, 0.01 M imidazole, 0.001 M EDTA, pH 6.5. When the extract was made to 85% saturation in ammonium sulfate, a large quantity of heparin neutralizing activity was detected in the precipitate. Each small intestine contains approximately 35,000 units of heparin neutralizing activity. This heparin inhibitor was further purified by the procedures of zinc sulfate precipitation, ammonium sulfate fractionation, ethanol precipitation and heparin-sepharose chromatography. A 37 fold partial purification with 15% overall recovery was achieved to yield heparin inhibitor with specific activity of 50-65 units per mg of protein.


2020 ◽  
Vol 51 (3) ◽  
pp. 767-776
Author(s):  
Al-easawi & et al.

This study was aimed, extraction and purification of beta-Galactosidase from local almond(Amygdalus communis)  for lactose intolerance treatment. The best one among 10 methods method of the extraction was using sodium phosphate buffer at 0.2 molar. Which was  achieves the highest specific activity amounted to 3.66unit/mg protein. Then, partial purification of enzyme was done using five methods. The highest specific activity was obtained using the method of precipitation with ammonium sulphate at 30-70% since the specific activity was 15.85units/mg protein. Which represented the best way to precipitation the enzyme. Three iso enzymes were obtained. One of them was taken for its high specific activity(20.10units/mg protein) and ion exchange chromatography was used and followed by gel filtration technique using sephadex-100 column to increase purification. The specific activity was increased to 21.95units/mg protein. Lactose hydrolysis efficiency test was performed and the purified enzyme showed high efficiency in standard lactose hydrolysis test.          


Author(s):  
V.V. Zinchenko ◽  
◽  
E.S Fedorenko ◽  
A.V Gorovtsov ◽  
T.M Minkina ◽  
...  

As a result of the model experiment, an increase in the enzymatic activity of meadow chernozem of the impact zone of Ataman Lake with the introduction of a strains mixture of metal-resistant microorganisms into the soil was established. The experiment has shown that the application of bacterial strains increases the dehydrogenase activity of contaminated soil by 51.8% compared to the variant without remediation


2013 ◽  
Vol 10 (2) ◽  
pp. 29
Author(s):  
Normah Ismail ◽  
Nur' Ain Mohamad Kharoe

Unripe and ripe bilimbi (Averrhoa bilimbi L.) were ground and the extracted juices were partially purified by ammonium sulfate precipitation at the concentrations of 40 and 60% (w/v). The collected proteases were analysed for pH, temperature stability, storage stability, molecular weight distribution, protein concentration and protein content. Protein content of bilimbi fruit was 0.89 g. Protease activity of both the unripe and ripe fruit were optimum at pH 4 and 40°C when the juice were purified at 40 and 60% ammonium sulfate precipitation. A decreased in protease activity was observed during the seven days of storage at 4°C. Molecular weight distribution indicated that the proteases protein bands fall between IO to 220 kDa. Protein bands were observed at 25, 50 and 160 kDa in both the unripe and ripe bilimbi proteases purified with 40% ammonium sulfate, however, the bands were more intense in those from unripe bilimbi. No protein bands were seen in proteases purified with 60% ammonium sulfate. Protein concentration was higher for proteases extracted with 40% ammonium sulfate at both ripening stages. Thus, purification using 40% ammonium sulfate precipitation could be a successful method to partially purify proteases from bilimbi especially from the unripe stage. 


2019 ◽  
Vol 15 (3) ◽  
Author(s):  
Trismillah

Cavendish banana peel can be used as a substitute for the expensive xylan, while molasses than as a source of carbon as well as nitrogen, minerals and nutrients needed for the growth of microbes that can produce the enzyme. Xylanase produced from Bacillus stearothermopillus DSM 22, using media cavendish banana peels with the addition of molasses 1%, 2%, and 3%. Fermentation is done in a shaker incubator at 550C temperature conditions, initial pH 8, and 250 rpm agitation. The result showed the highest enzyme activity of 4,14 ± 0,16 U/mL min., on the addition 2% molasses after 24 hours. Further fermentation carried out in the fermenter working volume of 3.5 liters, with the condition of temperature 550C, pH 8, aeration 1 vvm, agitation 250 rpm, the highest spesific enzyme of activity of 51,62 ± 0,16 U/mg after 24 hours. Partial purification of xylanase enzyme fermentation is done with the results of microfiltration, ultrafiltration, ammonium sulfate (0-80%) and dialysis. There is an increase in the purity of the enzyme at each stage of purification, the highest purity on dialysis 3.23 times of crude enzymes.Kulit buah pisang kapendis dapat digunakan sebagai pengganti xilan yang harganya mahal, sementara molases selain sebagai sumber karbon serta nitrogen, mineral dan nutrisi dibutuhkan untuk pertumbuhan mikroba yang dapat menghasilkan enzim. Xilanase yang dihasilkan dari Bacillus stearothermopillus DSM 22, menggunakan media kulit pisang kapendis dengan penambahan molase 1%, 2%, dan 3%. Fermentasi dilakukan dalam shaker inkubator pada temperatur 550C, pH awal 8, dan agitasi 250 rpm. Hasilnya menunjukkan aktivitas enzim tertinggi 4,14 ± 0,16 U/mL min., pada penambahan 2% molases setelah 24 jam. Selanjutnya fermentasi dilakukan di dalam fermentor, volume kerja dari 3,5 liter, dengan kondisi temperatur 550C, pH 8, aeration 1 vvm, agitasi 250 rpm, aktivitas spesifik tertinggi 51,62 ± 0,16 U/mg setelah 24 jam. Pemurnian parsial fermentasi enzim xilanase dilakukan dengan hasil mikrofiltrasi, ultrafiltrasi, amonium sulfat (0-80%) dan dialisis. Ada peningkatan kemurnian enzim pada setiap tahap pemurnian, kemurnian tertinggi pada dialisis 3,23 kali dari enzim kasar.Keywords: Xylanase, B. stearothermophillus DSM 22, Cavendish banana peel, molasses, enzyme activity


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1325
Author(s):  
Zhongwei Gao ◽  
Changqing Pan ◽  
Chang-Ho Choi ◽  
Chih-Hung Chang

Water pollution is a growing global issue; there are many approaches to treating wastewater, including chemical coagulation, physical adsorption, and chemical oxidation. The photocatalysis process has provided a solution for removing pollutants from wastewater, where the pair of the photoelectron and hole works through an asymmetric way to degrade the contaminants under UV irradiation. This method offers an alternative route for treating the pollutant with a lower energy cost, high efficiency, and fewer byproducts. A continuous-flow microfluidic reactor has a channel size from tens to thousands of micrometers, providing uniform irradiation and short diffusion length. It can enhance the conversion efficiency of photocatalysis due to the simple spatial symmetry inside the microreactor channel and among the individual channels. In addition, the bandgap of TiO2, ZnO, or other photocatalyst nanoparticles with symmetric crystal structure can be modified through doping or embedding. In this mini-review, a review of the reported continuous-flow photocatalytic microfluidic reactor is discussed from the perspective of both microreactor design and material engineering.


Sign in / Sign up

Export Citation Format

Share Document