scholarly journals Detrimental effects of cerium oxide nanoparticles on testis, sperm parameters quality, and in vitro fertilization in mice: An experimental study

Author(s):  
Elnaz Hosseinalipour ◽  
Mojtaba Karimipour ◽  
Abbas Ahmadi

Background: Cerium oxide nanoparticles (CeO2 NPs) as an important nanomaterial have a wide range of applications in many fields and human beings’ exposure to this nanomaterial is unavoidable. The effects of CeO2 NPs on the male reproductive system are controversial. Objective: To determine the effects of the administration of CeO2 NPs on the testis tissue, sperm parameters, and in vitro fertilization (IVF) in mice. Materials and Methods: Twenty-four male mice were divided into three groups (n = 8/each): one control and two experimental groups receiving CeO2 NPs at doses of 50 and 100 mg/kg body weight, respectively, for 35 days. At the end of the experiment, the diameter of seminiferous tubules (SNTs), epithelial height of SNTs, spermiogenesis index in testes, sperm parameters (count, motility, viability, and morphology), sperm chromatin condensation, DNA integrity, and IVF assays were analyzed. Results: Histological results showed that the tubular diameter, the epithelial height of the SNTs, and the spermiogenesis index were significantly decreased in the experimental groups receiving CeO2 NPs. All sperm parameters in the experimental groups were significantly reduced and, additionally, the percentages of immature sperms and sperms with DNA damage were significantly increased in groups treated with CeO2 NPs compared to the control. Furthermore, the rates of IVF and in vitro embryo development were decreased. Conclusion: Collectively, the current study showed that oral administration of CeO2 NPs in mice had detrimental effects on the male reproductive system through inducing testicular tissue alterations, decreasing sperm parameters quality, and also diminishing the IVF rate and in vitro embryonic development. Key words: Cerium oxide, Testis, Sperm, Fertilization, Mice.

2017 ◽  
Vol 13 ◽  
pp. 248-254 ◽  
Author(s):  
Alexander S. Chernov ◽  
Dmitry A. Reshetnikov ◽  
Anton L. Popov ◽  
Nelly R. Popova ◽  
Irina V. Savintseva ◽  
...  

Cerium oxide nanoparticles (nanoceria) are considered as one of the most promising nanomaterials for biomedical applications. Complex analysis of cytotoxicity, including the assessment of effects on the reproductive system, is required for development of new biomedical materials. In this study, we investigated the effects of ultra-small citrate-stabilized cerium oxide nanoparticles on the development of mouse embryos in vitro and embryogenesis process in vivo. We have shown that nanoceria in a wide range of concentrations do not exert a toxic effect on the development of 2-cell embryos and embryogenesis.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Bernat Córdoba-Jover ◽  
Altamira Arce-Cerezo ◽  
Jordi Ribera ◽  
Montse Pauta ◽  
Denise Oró ◽  
...  

Abstract Background and aims Cerium oxide nanoparticles are effective scavengers of reactive oxygen species and have been proposed as a treatment for oxidative stress-related diseases. Consequently, we aimed to investigate the effect of these nanoparticles on hepatic regeneration after liver injury by partial hepatectomy and acetaminophen overdose. Methods All the in vitro experiments were performed in HepG2 cells. For the acetaminophen and partial hepatectomy experimental models, male Wistar rats were divided into three groups: (1) nanoparticles group, which received 0.1 mg/kg cerium nanoparticles i.v. twice a week for 2 weeks before 1 g/kg acetaminophen treatment, (2) N-acetyl-cysteine group, which received 300 mg/kg of N-acetyl-cysteine i.p. 1 h after APAP treatment and (3) partial hepatectomy group, which received the same nanoparticles treatment before partial hepatectomy. Each group was matched with vehicle-controlled rats. Results In the partial hepatectomy model, rats treated with cerium oxide nanoparticles showed a significant increase in liver regeneration, compared with control rats. In the acetaminophen experimental model, nanoparticles and N-acetyl-cysteine treatments decreased early liver damage in hepatic tissue. However, only the effect of cerium oxide nanoparticles was associated with a significant increment in hepatocellular proliferation. This treatment also reduced stress markers and increased cell cycle progression in hepatocytes and the activation of the transcription factor NF-κB in vitro and in vivo. Conclusions Our results demonstrate that the nanomaterial cerium oxide, besides their known antioxidant capacities, can enhance hepatocellular proliferation in experimental models of liver regeneration and drug-induced hepatotoxicity.


Author(s):  
E. López-Pérez ◽  
F. Cortés-Villavicencio ◽  
C. Muñoz-García ◽  
J. Gallegos-Sánchez ◽  
Alejandro Ávalos-Rodríguez

Objective: To describe the anatomy, morphology and physiology of the reproductive system of male jaguars, as well as assisted reproduction techniques. Methodology: A literature review on the anatomy and morphology of the jaguar´s reproductive system, its physiological characteristics and assisted reproduction techniques were carried out to document relevant information on the topic. Results: With this review, basic aspects of the morphology of the reproductive system of the jaguars are disclosed, although scarce knowledge is available on their reproduction. The advances in the collection, evaluation and cryopreservation of semen of this feline are shown, in addition to assisted reproduction techniques such as artificial insemination and in vitro fertilization, which have a great potential to safeguard the species. Study limitations: The jaguar, an emblematic species of Latinamerica, is an endangered species, like other wild felids species as ocelot (Leopardus pardalis) and margay (Leopardus wiedii), which makes it necessary to have a national assisted reproduction program. However, for this to be possible, information about their reproductive physiology is necessary, which is complicated in wild animals and even more so because the reproductive mechanisms greatly differ between felids species. There is scarce information in this regard from its free-living or Mexican zoos, it is for this reason necessary to generate such information. Conclusions: It is necessary to continue working on designing protocols for artificial insemination and other assisted reproduction techniques such as in-vitro fertilization specifically for male Panthera onca.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1565 ◽  
Author(s):  
Turin-Moleavin ◽  
Fifere ◽  
Lungoci ◽  
Rosca ◽  
Coroaba ◽  
...  

Background. Cerium oxide nanoparticles present the mimetic activity of superoxide dismutase, being able to inactivate the excess of reactive oxygen species (ROS) correlated with a large number of pathologies, such as stents restenosis and the occurrence of genetic mutations that can cause cancer. This study presents the synthesis and biological characterisation of nanoconjugates based on nanoparticles of iron oxide interconnected with cerium oxide conjugates. Methods. The synthesis of magnetite-nanoceria nanoconjugates has been done in several stages, where the key to the process is the coating of nanoparticles with polyethyleneimine and its chemical activation-reticulation with glutaraldehyde. The nanoconjugates are characterised by several techniques, and the antioxidant activity was evaluated in vitro and in vivo. Results. Iron oxide nanoparticles interconnected with cerium oxide nanoparticles were obtained, having an average diameter of 8 nm. Nanoconjugates prove to possess superparamagnetic properties and the saturation magnetisation varies with the addition of diamagnetic components in the system, remaining within the limits of biomedical applications. In vitro free-radical scavenging properties of nanoceria are improved after the coating of nanoparticles with polyethylenimine and conjugation with magnetite nanoparticles. In vivo studies reveal increased antioxidant activity in all organs and fluids collected from mice, which demonstrates the ability of the nanoconjugates to reduce oxidative stress. Conclusion. Nanoconjugates possess magnetic properties, being able to scavenge free radicals, reducing the oxidative stress. The combination of the two properties mentioned above makes them excellent candidates for theranostic applications.


2017 ◽  
Vol 38 ◽  
pp. 136-141 ◽  
Author(s):  
Valérie Forest ◽  
Lara Leclerc ◽  
Jean-François Hochepied ◽  
Adeline Trouvé ◽  
Gwendoline Sarry ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document