scholarly journals Potential Effect of Human Platelet Lysate on in vitro Expansion of Human Corneal Endothelial Cells Compared with Y-27632 ROCK Inhibitor

Author(s):  
Mohammad Amir Mishan ◽  
Sahar Balagholi ◽  
Tahereh Chamani ◽  
Sepehr Feizi ◽  
Zahra-Soheila Soheili ◽  
...  

Purpose: Corneal endothelial cell (CEC) therapy can be used as a promising therapeutic option for patients with various corneal endothelial dysfunctions. In this study, we compared the proliferative effect of human platelet lysate (HPL), as a xeno-free medium supplement, with Y-27632 Rho/rho-associated protein kinase (ROCK) inhibitor, as a wellknown proliferative and adhesive agent for CECs, and fetal bovine serum (FBS) as the control, in the culture medium of human corneal endothelial cells (HCECs). Methods: We isolated HCECs from human donors and treated the cells as three different treatment groups including 20% HPL only, 10 μM Y-27632 ROCK inhibitor, combination of 20% HPL and 10 μM Y-27632 ROCK inhibitor, and 20% FBS as the control group. ELISA cell proliferation assay and cell counting was performed on the treated cells. Finally, HCECs were characterized by morphology and immunocytochemistry (ICC). Results: There was no significant proliferative effect of HPL on cell proliferation compared with the cells treated with Y-27632 ROCK inhibitor or the combination of HPL and Y-27632 ROCK inhibitor, but all the respected treatments had significant inducible effect on cell proliferation as compared with FBS-treated cells. The cells grown in all three treatment groups exhibited CEC morphology. Also, there was a higher expression of Na+/K+-ATPase and ZO-1, as CEC characteristic markers, in the culture of HCECs treated with HPL as compared with FBS. Conclusion: HPL offers a xeno−free and affordable medium supplement for CEC expansion that can be used in clinical applications.

Cytotherapy ◽  
2014 ◽  
Vol 16 (9) ◽  
pp. 1238-1244 ◽  
Author(s):  
Pablo Hofbauer ◽  
Sabrina Riedl ◽  
Karin Witzeneder ◽  
Florian Hildner ◽  
Susanne Wolbank ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Silvia Palombella ◽  
Martino Guiotto ◽  
Gillian C. Higgins ◽  
Laurent L. Applegate ◽  
Wassim Raffoul ◽  
...  

Abstract Background The autologous nerve graft, despite its donor site morbidity and unpredictable functional recovery, continues to be the gold standard in peripheral nerve repair. Rodent research studies have shown promising results with cell transplantation of human adipose-derived stem cells (hADSC) in a bioengineered conduit, as an alternative strategy for nerve regeneration. To achieve meaningful clinical translation, cell therapy must comply with biosafety. Cell extraction and expansion methods that use animal-derived products, including enzymatic adipose tissue dissociation and the use of fetal bovine serum (FBS) as a culture medium supplement, have the potential for transmission of zoonotic infectious and immunogenicity. Human-platelet-lysate (hPL) serum has been used in recent years in human cell expansion, showing reliability in clinical applications. Methods We investigated whether hADSC can be routinely isolated and cultured in a completely xenogeneic-free way (using hPL culture medium supplement and avoiding collagenase digestion) without altering their physiology and stem properties. Outcomes in terms of stem marker expression (CD105, CD90, CD73) and the osteocyte/adipocyte differentiation capacity were compared with classical collagenase digestion and FBS-supplemented hADSC expansion. Results We found no significant differences between the two examined extraction and culture protocols in terms of cluster differentiation (CD) marker expression and stem cell plasticity, while hADSC in hPL showed a significantly higher proliferation rate when compared with the usual FBS-added medium. Considering the important key growth factors (particularly brain-derived growth factor (BDNF)) present in hPL, we investigated a possible neurogenic commitment of hADSC when cultured with hPL. Interestingly, hADSC cultured in hPL showed a statistically higher secretion of neurotrophic factors BDNF, glial cell-derived growth factor (GDNF), and nerve-derived growth factor (NFG) than FBS-cultured cells. When cocultured in the presence of primary neurons, hADSC which had been grown under hPL supplementation, showed significantly enhanced neurotrophic properties. Conclusions The hPL-supplement medium could improve cell proliferation and neurotropism while maintaining stable cell properties, showing effectiveness in clinical translation and significant potential in peripheral nerve research.


2020 ◽  
pp. 1-9
Author(s):  
Olga R. Ballesteros ◽  
Patrick T. Brooks ◽  
Eva K. Haastrup ◽  
Anne Fischer-Nielsen ◽  
Lea Munthe-Fog ◽  
...  

Adipose-derived stromal/stem cells (ASCs) are being tested as a possible treatment for a wide range of diseases to exploit the immunomodulatory and regenerative potential demonstrated in vitro. Pooled human platelet lysate (pHPL) has replaced fetal bovine serum (FBS) as the preferred growth supplement because of its xeno-free origin and improved cell proliferation. Much has been done toward reducing the concentration of pHPL required when expanding ASCs. However, little is known on how increasing the concentration of pHPL affects ASC potency, which could lead to changes with possible beneficial applications. This study investigated the effect of 5, 10, or 20% pHPL in culture media on ASC proliferation and phenotypic marker expression, including chemokine receptors CXCR2, CXCR3, CXCR4, and VLA-4. Adipogenic and osteogenic properties, as well as immunosuppressive properties, including the ability to induce indoleamine-pyrrole 2,3-dioxygenase 1 (IDO1) and suppress T cell proliferation, were also examined. We observed a significant increase in cell yield (approximately 2-fold) and a corresponding reduction in population doubling time and cell volume when doubling the concentration of pHPL in the growth media. ASCs maintained expression of phenotypic surface markers CD73, CD90, and CD105 and were negative for CD45 and CD31. The ability to induce IDO1 and suppress T cell proliferation was observed as well. Adipogenesis and osteogenesis, however, seem to be increased at higher concentrations of pHPL (20% > 10% > 5%), while expression of chemokine receptors CXCR2 and CXCR3 was lower. In conclusion, increasing the pHPL concentration to 20% could be used to optimize culture conditions when producing cells for clinical treatments and may even be used to enhance beneficial ASC properties depending on the desired therapeutic effect.


Sign in / Sign up

Export Citation Format

Share Document