scholarly journals The Perspective of Traditional Persian Medicine on Botanicals Effective in Quitting Opium Addiction: A Review

Author(s):  
Shabnam Khatami ◽  
Mohsen Naseri ◽  
Zahra Bahaeddin ◽  
Farzaneh Ghaffari ◽  
Abdolali Moosavizadeh ◽  
...  

Traditional Persian medicine (TPM) is a set of theoretical and practical sciences that are used in the diagnosis, prevention, and treatment of physical, mental, or social disorders. This holistic medical system can provide solutions for some diseases, including drug addiction, that modern medicine, only offers symptomatic treatment. Since the addiction prevalence in the 16th century, Persian medicine scholars have introduced various ways to quit it. In this study, we investigated if Persian medicine has treatment options to quit opium addiction. We studied the main textbooks of TPM that specifically talked about addiction. Our study was conducted according to a systematic prioritization in traditional medicine. Additionally, scientific databases such as PubMed, ScienceDirect, Scopus, and Google Scholar searched for plant active ingredients in current pharmacology. By this method, forty-nine drugs were found, and nine drugs with herbal origin obtained the highest score in addiction treatment. Since the main purpose of the study is finding new drugs theoretically effective in quitting opium addiction; we sought to find evidence of that effectiveness in modern pharmacology and we found them in most prioritized drugs. Prioritizing traditional drugs can lead to find new drugs which also have evidence of effectiveness in modern studies. Therefore, they could be introduced as novel natural remedies for disease. The list of drugs obtained in this study can be the basis for conducting in vitro and in vivo studies for design and development of new drugs in the treatment of opium addiction. In fact, traditional medicine could have a special place in quitting opium addiction, and this capacity should be further exploited.

2014 ◽  
Vol 2014 ◽  
pp. 1-32 ◽  
Author(s):  
Shamkant B. Badgujar ◽  
Vainav V. Patel ◽  
Atmaram H. Bandivdekar

Foeniculum vulgareMill commonly called fennel has been used in traditional medicine for a wide range of ailments related to digestive, endocrine, reproductive, and respiratory systems. Additionally, it is also used as a galactagogue agent for lactating mothers. The review aims to gather the fragmented information available in the literature regarding morphology, ethnomedicinal applications, phytochemistry, pharmacology, and toxicology ofFoeniculum vulgare. It also compiles available scientific evidence for the ethnobotanical claims and to identify gaps required to be filled by future research. Findings based on their traditional uses and scientific evaluation indicates thatFoeniculum vulgareremains to be the most widely used herbal plant. It has been used for more than forty types of disorders. Phytochemical studies have shown the presence of numerous valuable compounds, such as volatile compounds, flavonoids, phenolic compounds, fatty acids, and amino acids. Compiled data indicate their efficacy in severalin vitroandin vivopharmacological properties such as antimicrobial, antiviral, anti-inflammatory, antimutagenic, antinociceptive, antipyretic, antispasmodic, antithrombotic, apoptotic, cardiovascular, chemomodulatory, antitumor, hepatoprotective, hypoglycemic, hypolipidemic, and memory enhancing property.Foeniculum vulgarehas emerged as a good source of traditional medicine and it provides a noteworthy basis in pharmaceutical biology for the development/formulation of new drugs and future clinical uses.


2020 ◽  
Vol 9 ◽  
pp. 1743
Author(s):  
Solmaz Rahmani Barouji ◽  
Amir Saber ◽  
Mohammadali Torbati ◽  
Seyyed Mohammad Bagher Fazljou ◽  
Ahmad Yari Khosroushahi

raditional medicine (TM) that developed over the years within various societies consists of medical experimental knowledge and practices, which apply natural methods and compounds for general wellness and healing. Moomiaii as a pale-brown to blackish-brown natural exudate is one of the natural compounds in traditional medicine that has been used over 3000 years in many countries of the world especially in India, China, Russia, Iran, Mongolia, Kazakhstan and Kirgizstan. We reviewed all English-language studies about Moomiaii that we accessed them. In traditional medicine, many beneficial activities have been attributed to Moomiaii and to its main constituents, Humic acid and Fulvic acid, which are widely used to prevent and treatment of different diseases. Some modern scientific investigations showed that Moomiaii as a safe dietary supplement can be beneficial in various health complications. Even though the beneficial effects of Moomiaii have been confirmed in traditional and modern medicine, it seems that additional in-vitro/in-vivo studies and comprehensive clinical trials are necessary to explain the whole mechanisms of action and to determine the effective doses in various diseases. We discuss and clarify the claimed health beneficial effects of Moomiaii in some wide-spread diseases regarding its anti-ulcerogenic, immunomodulatory, antidiabetic, antioxidative and anticancer properties. [GMJ.2020;9:e1743]


Author(s):  
Serda Kecel Gunduz ◽  
Bilge Bicak ◽  
Aysen E. Ozel

In this chapter, computational approaches for the discovery of new drugs that are useful for diagnosis and treatment of disease will be described in three parts. MD technique uniquely supports protein design attempts by giving information about protein dynamics associated with atomic-level descriptions of the relationship between dynamics and function. The purpose of molecular docking is to provide an estimate of the ligand-receptor complex structure using computational methods. By this estimation, the mechanism of drug binding and action are described by determining the three-dimensional simulation of drug and drug-induced macrostructure. ADME characteristics are physicochemically significant descriptors and pharmacokinetically relevant properties used to design more effective drugs and new analogs. As a result, in-silico calculations can provide robust preliminary information as to drug activity and mechanism in the drug production process, as well as in vitro and in vivo studies.


Nutrients ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 771 ◽  
Author(s):  
Maria Grazia Rossino ◽  
Giovanni Casini

Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus and is characterized by degeneration of retinal neurons and neoangiogenesis, causing a severe threat to vision. Nowadays, the principal treatment options for DR are laser photocoagulation, vitreoretinal surgery, or intravitreal injection of drugs targeting vascular endothelial growth factor. However, these treatments only act at advanced stages of DR, have short term efficacy, and cause side effects. Treatment with nutraceuticals (foods providing medical or health benefits) at early stages of DR may represent a reasonable alternative to act upstream of the disease, preventing its progression. In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular mechanisms that induce DR, reducing both the neural and vascular damage typical of DR. Although most studies are limited to animal models and there is the problem of low bioavailability for many nutraceuticals, the use of these compounds may represent a natural alternative method to standard DR treatments.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Richard Komakech ◽  
Youngmin Kang ◽  
Jun-Hwan Lee ◽  
Francis Omujal

Prostate cancer remains one of the major causes of death worldwide. In view of the limited treatment options for patients with prostate cancer, preventive and treatment approaches based on natural compounds can play an integral role in tackling this disease. Recent evidence supports the beneficial effects of plant-derived phytochemicals as chemopreventive and chemotherapeutic agents for various cancers, including prostate cancer. Prunus africana has been used for generations in African traditional medicine to treat prostate cancer. This review examined the potential roles of the phytochemicals from P. africana, an endangered, sub-Saharan Africa plant in the chemoprevention and chemotherapy of prostate cancer. In vitro and in vivo studies have provided strong pharmacological evidence for antiprostate cancer activities of P. africana-derived phytochemicals. Through synergistic interactions between different effective phytochemicals, P. africana extracts have been shown to exhibit very strong antiandrogenic and antiangiogenic activities and have the ability to kill tumor cells via apoptotic pathways, prevent the proliferation of prostate cancer cells, and alter the signaling pathways required for the maintenance of prostate cancer cells. However, further preclinical and clinical studies ought to be done to advance and eventually use these promising phytochemicals for the prevention and chemotherapy of human prostate cancer.


2020 ◽  
Author(s):  
Valentin Buchter ◽  
Yih Ching Ong ◽  
François Mouvet ◽  
Abdallah Ladaycia ◽  
Elise Lepeltier ◽  
...  

<div>Schistosomiasis is a disease of poverty affecting millions of people. Praziquantel (PZQ), with its </div><div>strengths and weaknesses, is the only treatment available. We previously reported 3 lead </div><div>compounds derived from oxamniquine (OXA), an old antischistosomal drug: ferrocene‐containing </div><div>(Fc‐CH2‐OXA), ruthenocene‐containing (Rc‐CH2‐OXA) and benzene‐containing (Ph‐CH2‐OXA). </div><div>These derivatives showed excellent in vitro activity against both Schistosoma mansoni and S. </div><div>haematobium larvae and adult worms, and in vivo against S. mansoni. Encouraged by these </div><div>promising results, we followed a guided drug discovery process and report in this investigation on </div><div>metabolic stability studies, in vivo studies, computational simulations, and formulation studies. </div><div>Molecular dynamics simulations supported the in vitro results on the target protein. Though all </div><div>three compounds were poorly stable within an acidic environment, they were only slightly cleared </div><div>in the in vitro liver model. This is likely the reason as to why the promising in vitro activity did not </div><div>translate to in vivo activity. This limitation could not be saved by the formulation of lipid </div><div>nanocapsules as an intent to improve the in vivo activity. Further studies should focus on increasing </div><div>the compound’s bioavailability, in order to reach an active concentration in the parasite’s </div><div>microenvironment. </div>


Tumor Biology ◽  
2020 ◽  
Vol 42 (12) ◽  
pp. 101042832098056
Author(s):  
Evangelos Koustas ◽  
Panagiotis Sarantis ◽  
Margarita Theodorakidou ◽  
Michalis V Karamouzis ◽  
Stamatios Theocharis

Salivary gland carcinomas are a group of heterogeneous tumors of different histological subtypes, presenting relatively low incidence but the entire variable of types. Although novel treatment options for salivary gland carcinomas patients’ outcomes have improved, the treatment of this type of cancer is still not standardized. In addition, a significant number of patients, with a lack of optimal treatment strategies, have reduced survival. In the last two decades, a plethora of evidence pointed to the importance of autophagy, an essential catabolic process of cytoplasmatic component digestion, in cancer. In vitro and in vivo studies highlight the importance of autophagy in salivary gland carcinomas development as a tumor suppressor or promoter mechanism. Despite the potential of autophagy in salivary gland carcinomas development, no therapies are currently available that specifically focus on autophagy modulation in salivary gland carcinomas. In this review, we summarize current knowledge and clinical trials in regard to the interplay between autophagy and the development of salivary gland carcinomas. Autophagy manipulation may be a putative therapeutic strategy for salivary gland carcinomas patients.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Silvia Pietrobono ◽  
Giulia Anichini ◽  
Cesare Sala ◽  
Fabrizio Manetti ◽  
Luciana L. Almada ◽  
...  

AbstractUnderstanding the molecular events controlling melanoma progression is of paramount importance for the development of alternative treatment options for this devastating disease. Here we report a mechanism regulated by the oncogenic SOX2-GLI1 transcriptional complex driving melanoma invasion through the induction of the sialyltransferase ST3GAL1. Using in vitro and in vivo studies, we demonstrate that ST3GAL1 drives melanoma metastasis. Silencing of this enzyme suppresses melanoma invasion and significantly reduces the ability of aggressive melanoma cells to enter the blood stream, colonize distal organs, seed and survive in the metastatic environment. Analysis of glycosylated proteins reveals that the receptor tyrosine kinase AXL is a major effector of ST3GAL1 pro-invasive function. ST3GAL1 induces AXL dimerization and activation that, in turn, promotes melanoma invasion. Our data support a key role of the ST3GAL1-AXL axis as driver of melanoma metastasis, and highlight the therapeutic potential of targeting this axis to treat metastatic melanoma.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 417
Author(s):  
Xinning Wang ◽  
Aditi Shirke ◽  
Ethan Walker ◽  
Rongcan Sun ◽  
Gopolakrishnan Ramamurthy ◽  
...  

Metastatic castration-resistant prostate cancer poses a serious clinical problem with poor outcomes and remains a deadly disease. New targeted treatment options are urgently needed. PSMA is highly expressed in prostate cancer and has been an attractive biomarker for the treatment of prostate cancer. In this study, we explored the feasibility of targeted delivery of an antimitotic drug, monomethyl auristatin E (MMAE), to tumor tissue using a small-molecule based PSMA lig-and. With the aid of Cy5.5, we found that a cleavable linker is vital for the antitumor activity of the ligand–drug conjugate and have developed a new PSMA-targeting prodrug, PSMA-1-VcMMAE. In in vitro studies, PSMA-1-VcMMAE was 48-fold more potent in killing PSMA-positive PC3pip cells than killing PSMA-negative PC3flu cells. In in vivo studies, PSMA-1-VcMMAE significantly inhibited tumor growth leading to prolonged animal survival in different animal models, including metastatic prostate cancer models. Compared to anti-PSMA antibody-MMAE conjugate (PSMA-ADC) and MMAE, PSMA-1-VcMMAE had over a 10-fold improved maximum tolerated dose, resulting in improved therapeutic index. The small molecule–drug conjugates reported here can be easily synthesized and are more cost efficient than anti-body–drug conjugates. The therapeutic profile of the PSMA-1-VcMMAE encourages further clin-ical development for the treatment of advanced prostate cancer.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sija Landman ◽  
Chiel van der Horst ◽  
Piet E. J. van Erp ◽  
Irma Joosten ◽  
Rob de Vries ◽  
...  

AbstractInflammatory disorders like diabetes, systemic lupus erythematodes, inflammatory lung diseases, rheumatoid arthritis and multiple sclerosis, but also rejection of transplanted organs and GvHD, form a major burden of disease. Current classes of immune suppressive drugs to treat these disorders are never curative and side effects are common. Therefore there is a need for new drugs with improved and more targeted modes of action. Potential candidates are the DNA methyl transferase inhibitor 5-azacytidine (Aza) and its derivative 5-aza 2′deoxycitidine (DAC). Aza and DAC have been tested in several pre-clinical in vivo studies. In order to obtain an overview of disorders for which Aza and/or DAC can be a potential treatment, and to find out where information is lacking, we systematically reviewed pre-clinical animal studies assessing Aza or DAC as a potential therapy for distinct inflammatory disorders. Also, study quality and risk of bias was systematically assessed. In the 35 identified studies, we show that both Aza and DAC do not only seem to be able to alleviate a number of inflammatory disorders, but also prevent solid organ rejection and GvHD in in vivo pre-clinical animal models. Aza/DAC are known to upregulate FOXP3, a master transcription factor for Treg, in vitro. Seventeen studies described the effect on Treg, of which 16 studies showed an increase in Treg. Increasing Treg therefore seems to be a common mechanism in preventing inflammatory disorders by Aza/DAC. We also found, however, that many essential methodological details were poorly reported leading to an unclear risk of bias. Therefore, reported effects might be an overestimation of the true effect.


Sign in / Sign up

Export Citation Format

Share Document