scholarly journals THE COMPARISON OF MATCH FILTERING AND SPECTRAL INFORMATION DIVERGENCE METHODS FOR DETECTING OF WATER QUALITY

2018 ◽  
Author(s):  
Onder Gursoy ◽  
◽  
Rutkay Atun
2021 ◽  
Vol 13 (22) ◽  
pp. 4643
Author(s):  
Jinhua Liu ◽  
Jianli Ding ◽  
Xiangyu Ge ◽  
Jingzhe Wang

Controlling and managing surface source pollution depends on the rapid monitoring of total nitrogen in water. However, the complex factors affecting water quality (plant shading and suspended matter in water) make direct estimation extremely challenging. Considering the spectral response mechanisms of emergent plants, we coupled discrete wavelet transform (DWT) and fractional order discretization (FOD) techniques with three machine learning models (random forest (RF), bagging algorithm (bagging), and eXtreme Gradient Boosting (XGBoost)) to mine this potential spectral information. A total of 567 models were developed, and airborne hyperspectral data processed with various DWT scales and FOD techniques were compared. The effective information in the hyperspectral reflectance data were better emphasized after DWT processing. After DWT processing the original spectrum (OR), its sensitivity to TN in water was maximally improved by 0.22, and the correlation between FOD and TN in water was optimally increased by 0.57. The transformed spectral information enhanced the TN model accuracy, especially for FOD after DWT. For RF, 82% of the model R2 values improved by 0.02~0.72 compared to the model using FOD spectra; 78.8% of the bagging values improved by 0.01~0.53 and 65.0% of the XGBoost values improved by 0.01~0.64. The XGBoost model with DWT coupled with grey relation analysis (GRA) yielded the best estimation accuracy, with the highest precision of R2 = 0.91 for L6. In conclusion, appropriately scaled DWT analysis can substantially improve the accuracy of extracting TN from UAV hyperspectral images. These outcomes may facilitate the further development of accurate water quality monitoring in sophisticated global waters from drone or satellite hyperspectral data.


2020 ◽  
Vol 11 (4) ◽  
pp. 865-879
Author(s):  
Dulce Karen Figueroa-Figueroa ◽  
Jose Francisco Ramírez Dávila ◽  
Xanat Antonio-Némiga ◽  
Andrés González Huerta

El cultivo de aguacate (Persea americana Mill.) es uno de los más importantes en México, entre los estados con mayor producción se encuentra el Estado de México, que es el tercer estado productor a nivel nacional. Coatepec Harinas y Donato Guerra son dos de los municipios más representativos en lo respectivo a esta actividad; sin embargo, no existe un censo que especifique la superficie del cultivo, por lo que el objetivo de esta investigación fue probar métodos de índices de vegetación, algoritmos spectral angle mapper (SAM) y spectral information divergence (SID) y la combinación de estos en las imágenes del sensor Sentinel-2 para evaluar su desempeño en la identificación de áreas plantadas con el cultivo de aguacate. Los resultados se validaron con una matriz de confusión y la comparación de los datos de referencia de entrenamiento y validación. El algoritmo SID alcanzó una precisión de 97.5% para detectar aguacate, mientras que el tratamiento SAM obtuvo una precisión de 63.1%. La combinación de SID con el índice Anthocyanin Reflectance Index 1 (ARI1), proporcionó un mejor resultado sobre la cartografía de validación regional con 85% de precisión. Otras combinaciones de índices y tratamientos dieron resultados inferiores al 50% de la precisión por lo que no se recomiendan. Esta metodología podría ser probada para la detección de otros cultivos de interés comercial, dado que Sentinel-2 muestra ser una alternativa viable para este tipo de estudios, teniendo una buena resolución espectral, además de ser de fácil acceso y manipulación.


2020 ◽  
Vol 12 (13) ◽  
pp. 2154 ◽  
Author(s):  
Ke Wang ◽  
Ligang Cheng ◽  
Bin Yong

Spectral similarity measures can be regarded as potential metrics for kernel functions, and can be used to generate spectral-similarity-based kernels. However, spectral-similarity-based kernels have not received significant attention from researchers. In this paper, we propose two novel spectral-similarity-based kernels based on spectral angle mapper (SAM) and spectral information divergence (SID) combined with the radial basis function (RBF) kernel: Power spectral angle mapper RBF (Power-SAM-RBF) and normalized spectral information divergence-based RBF (Normalized-SID-RBF) kernels. First, we prove these spectral-similarity-based kernels to be Mercer’s kernels. Second, we analyze their efficiency in terms of local and global kernels. Finally, we consider three hyperspectral datasets to analyze the effectiveness of the proposed spectral-similarity-based kernels. Experimental results demonstrate that the Power-SAM-RBF and SAM-RBF kernels can obtain an impressive performance, particularly the Power-SAM-RBF kernel. For example, when the ratio of the training set is 20 % , the kappa coefficient of Power-SAM-RBF kernel (0.8561) is 1.61 % , 1.32 % , and 1.23 % higher than that of the RBF kernel on the Indian Pines, University of Pavia, and Salinas Valley datasets, respectively. We present three conclusions. First, the superiority of the Power-SAM-RBF kernel compared to other kernels is evident. Second, the Power-SAM-RBF kernel can provide an outstanding performance when the similarity between spectral signatures in the same hyperspectral dataset is either extremely high or extremely low. Third, the Power-SAM-RBF kernel provides even greater benefits compared to other commonly used kernels when the sizes of the training sets increase. In future work, multiple kernels combining with the spectral-similarity-based kernel are expected to be provide better hyperspectral classification.


2018 ◽  
Vol 55 (1) ◽  
pp. 013002
Author(s):  
王伟超 Wang Weichao ◽  
王慧琴 Wang Huiqin ◽  
王可 Wang Ke ◽  
王展 Wang Zhan

Author(s):  
H. Chauhan

<p><strong>Abstract.</strong> To develop crop spectra for variation in application of nitrogen (as fertilizer) and water at farmer’s field plots is very difficult as there are large variations in nitrogen and water applied also time of applications were different. During field visit it was found that various crops growth was not uniform in the study area even though local conditions (seed quality, soil and weather) were same this is possible due to variation in application of nitrogen and water. Development of crop spectra for nitrogen and water variations for unregulated farmer’s field plots based on spectral similarity analysis with regulated test field plots (where required amount of nitrogen and water applied at appropriate time) provides a fresh opportunity to develop and evaluate the crop spectra for nitrogen and water variations for real time applications. Spectral Information Divergence (SID) based spectral similarity analysis was carried out among spectra collected from unregulated farmer’s field plots and regulated test field plots for chickpea, sorghum and wheat crops. An average SID values equivalent to coefficient of correlation computed for four groups of nitrogen and water variations for chickpea, sorghum and wheat were 0.998, 0.996 and 0.994 respectively.</p>


Sign in / Sign up

Export Citation Format

Share Document