Evaluation of Oxidative Stress and Histiocytic Behaviour of Canine TVT using Alpha Antitrypsin

Author(s):  
Sapna Soni ◽  
K.K. Jakhar ◽  
Gauri A. Chandratre ◽  
Surjeet Singh

Background: There is scanty literature on evaluation of oxidative stress and alpha antitrypsin marker expression in canine TVT to know its histiocytic behaviour. Since venereal transmissible tumor is one of most important tumor affecting large population of canine, thus, study was conducted to investigate the above based on clinicopathology. Methods: The study was conducted on dogs suffering from transmissible venereal tumor (TVT) for evaluation of clinicopathological alterations, oxidative stress and expression pattern of alpha antitrypsin. Ten bitches and five male dogs with tumour masses seen on the external genitalia were used for the study. Detailed alterations due to TVT with respect to haematobiochemistry, oxidative stress, pathomorphology, proliferation and expression pattern of alpha antitrypsin were assessed. Result: Grossly tumors on the genital area were either pedunculated or sessile and of various shape such as cauliflower, filiform and irregular. Hematological alterations such as normocytic normochromic type of anaemia, thrombocytopenia, neutropenia and lymphocytopenia in TVT cases indicated immunosuppression. Significant alterations in liver enzymes, hypercalcemia and hypoglycaemia were also observed in TVT affected dogs. Increased level of MDA and decreased in concentration of antioxidant enzymes indicated association of oxidative stress in proliferation of tumor and reduction in number of T lymphocytes. Cytological examination revealed characteristic punctuate basophilia and vacuolation in tumour cells. Histopathological examination showed characteristic round cells with a little fibrous septa in a sheet like manner. AgNOR staining indicated moderate proliferative capacity as evidenced by scattered AgNOR dots. TVT cells showed moderate type of immunoreactivity with alpha anti-trypsin confirming its histiocytic origin upon immunohistochemistry.

2019 ◽  
Vol 8 (5) ◽  
pp. 663-676 ◽  
Author(s):  
Dalia Fouad ◽  
Amira Badr ◽  
Hala A. Attia

Abstract Raspberry Ketone (RK) is a natural phenolic compound which is marketed nowadays as a popular weight-reducing remedy, with reported antioxidant and anti-inflammatory activities. However, its biological activity is not fully elucidated. Hepatotoxicity is the leading cause of acute liver failure in Europe and North America, and its management is still challenging. Therefore, this study aimed to assess the therapeutic detoxification activity of RK against liver injury in vivo and to explore the underlying mechanisms using carbon tetrachloride (CCl4)-induced hepatotoxicity as a model. First, a dose–response study using 4 different doses, 25, 50, 100, and 200 mg kg−1 day−1, of RK was conducted. RK was administered for 5 days as a pretreatment, followed by a single dose of CCl4 (1 ml kg−1, 1 : 1 v/v CCl4 : olive oil). The RK dose of 200 mg kg−1 showed the greatest protective effect and was selected for further investigations. CCl4 hepatotoxicity was confirmed by elevation of liver enzymes, and histopathological examination. CCl4-induced oxidative stress was evident from increased lipid peroxidation measured as thiobarbituric acid reactive substances (TBARS) along with depleted superoxide dismutase (SOD), reduced glutathione (GSH), and total antioxidant capacity (TAC). Increased oxidative stress was associated with increased cytochrome c expression with subsequent activation of caspase-9 and caspase-3, in addition to DNA fragmentation reflecting apoptosis. CCl4 also induced the expression of inflammatory cytokines (NF-κB and TNF-α). Interestingly, RK hepatoprotective activity was evident from the reduction of liver enzymes, and maintenance of hepatocyte integrity and microstructures as evaluated by histopathological examination using H and E, and transmission electron microscopy. The antioxidant activity of RK was demonstrated by the increase of TAC, SOD, and GSH, with a concomitant decrease of the TBARS level. Moreover, RK pretreatment inhibited CCl4-induced upregulation of inflammatory mediators. RK antiapoptotic activity was indicated by the reduction of the expression of cytoplasmic cytochrome-C, a decrease of caspases, and inhibition of DNA fragmentation. In conclusion, this study demonstrates that RK is a promising hepatoprotective agent. The underlying mechanisms include antioxidant, anti-inflammatory, and anti-apoptotic activities. This is the first study reporting RK hepatoprotective activity in acute hepatic injury and approves its antiapoptotic effect in the liver.


2017 ◽  
Vol 95 (5) ◽  
pp. 492-500 ◽  
Author(s):  
Hayam Ateyya ◽  
Manar A. Nader ◽  
Ghalia M. Attia ◽  
Nagla A. El-Sherbeeny

Nicotine mediates some of the injurious effects caused by consuming tobacco products. This work aimed at investigating the defensive role of alpha-lipoic acid (ALA) with its known antioxidant and antiinflammatory effect in nicotine-induced lung and liver damage. Rats were arranged into 4 groups: control, nicotine, ALA, and ALA–nicotine groups. Oxidative stress and antioxidant status were determined by assessing thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), and glutathione (GSH) levels in lung and liver. Liver enzymes and lipid profiles were measured and pulmonary and hepatic damage were assessed by histopathological examination. Also, serum levels of transforming growth factor beta 1 (TGF-β1) and vascular cell adhesion molecule 1 (VCAM-1) were determined. The results revealed an increase in TBARS in tissues and a reduction in both SOD and GSH activity in the nicotine-treated rats. Nicotine induced high levels of liver enzymes, TGF-β1, VCAM-1, and dyslipidemia with histopathological changes in the lung and liver. ALA administration along with nicotine attenuated oxidative stress and normalized the SOD and GSH levels, ameliorated dyslipidemia, and improved TGF-β1 and VCAM-1 with better histopathology of the lung and liver. The study data revealed that ALA may be beneficial in alleviating nicotine-induced oxidative stress, dyslipidemia, and both lung and liver damage.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 195
Author(s):  
Yaswanth Kuthati ◽  
Prabhakar Busa ◽  
Srikrishna Tummala ◽  
Vaikar Navakanth Rao ◽  
Venkata Naga Goutham Davuluri ◽  
...  

Oxidative stress resulting from reactive oxygen species (ROS) is known to play a key role in numerous neurological disorders, including neuropathic pain. Morphine is one of the commonly used opioids for pain management. However, long-term administration of morphine results in morphine antinociceptive tolerance (MAT) through elevation of ROS and suppression of natural antioxidant defense mechanisms. Recently, mesoporous polydopamine (MPDA) nanoparticles (NPS) have been known to possess strong antioxidant properties. We speculated that morphine delivery through an antioxidant nanocarrier might be a reasonable strategy to alleviate MAT. MPDAs showed a high drug loading efficiency of ∼50%, which was much higher than conventional NPS. Spectral and in vitro studies suggest a superior ROS scavenging ability of NPS. Results from a rat neuropathic pain model demonstrate that MPDA-loaded morphine (MPDA@Mor) is efficient in minimizing MAT with prolonged analgesic effect and suppression of pro-inflammatory cytokines. Additionally, serum levels of liver enzymes and levels of endogenous antioxidants were measured in the liver. Treatment with free morphine resulted in elevated levels of liver enzymes and significantly lowered the activities of endogenous antioxidant enzymes in comparison with the control and MPDA@Mor-treated group. Histopathological examination of the liver revealed that MPDA@Mor can significantly reduce the hepatotoxic effects of morphine. Taken together, our current work will provide an important insight into the development of safe and effective nano-antioxidant platforms for neuropathic pain management.


2020 ◽  
Vol 15 ◽  
Author(s):  
Samar R. Saleh ◽  
Mariam M. Abady ◽  
Mohammed Nofal ◽  
Nashwa W. Yassa ◽  
Mohamed S. Abdel-latif ◽  
...  

Background: Berberine (BBR), an isoquinoline alkaloid, acts as a multipotent active pharmaceutical ingredient to counteract several types of dementia based on its numerous pharmacological actions including antioxidant, antiinflammatory, cholesterol-lowering effect, and inhibition of Aβ production and AChE. However, BBR suffers from poor absorption, bioavailability and brain drug uptake. The present study is directed for the formulation and characterization of Chitosan BBR-nanoparticles (BBR-NPs) as well as the estimation of its neuroprotective effects against scopolamine induced cognitive impairments. Methods: BBR-NPs were formulated using ionic gelation method and tripolyphosphate was chosen as a cross linker. Nanoparticles size, zeta potential, encapsulation efficiency and releasing profile were estimated. To investigate the neuroprotective effects, adult fifty six Wistar male rats were randomly distributed into: three control groups, received saline, polyethylene glycol or chitosan- NPs respectively; induced group, received scopolamine (2 mg/ kg, i.p.) and three treated groups were orally administrated BBR (50 mg/ kg), BBR- NP (7 mg/ kg) and donepezil (2.25 mg/ kg, as positive control) followed by scopolamine injection after 40 min, daily for 4 weeks. Morris water maze test, oxidative stress parameters, cholinergic and amyloid-β processing intermediates as well as neuroplasticity markers and histopathological examination were assessed. Results: Our results showed that BBR- NPs were better than BBR and donepezil as BBR- NPs were powerful inhibitory ligands toward AChE and Aβ42 formation and significantly down regulated Tau, iNOS and BACE gene expression in rats’ hippocampus. BBR-NPs administration, at 1/6 of BBR therapeutic recommended dose, significantly improved learning and memory function. This could be accredited to the diminution of oxidative stress and amyloid-β toxicity in addition to the improvement of the neuroplasticity markers. Conclusions: The enhancing effect of BBR- NPs could be related to the enhancing of its bioavailability, absorption and brain drug uptake which need more investigation in future work.


2021 ◽  
pp. 096032712199944
Author(s):  
Mohamed IA Hassan ◽  
Fares EM Ali ◽  
Abdel-Gawad S Shalkami

Aim: Hepatic ischemia/reperfusion (I/R) injury is a syndrome involved in allograft dysfunction. This work aimed to elucidate carvedilol (CAR) role in hepatic I/R injury. Methods: Male rats were allocated to Sham group, CAR group, I/R group and CAR plus I/R group. Rats subjected to hepatic ischemia for 30 minutes then reperfused for 60 minutes. Oxidative stress markers, inflammatory cytokines and nitric oxide synthases were measured in hepatic tissues. Results: Hepatocyte injury following I/R was confirmed by a marked increase in liver enzymes. Also, hepatic I/R increased the contents of malondialdehyde however decreased glutathione contents and activities of antioxidant enzymes. Furthermore, hepatic I/R caused elevation of toll-like receptor-4 (TLR-4) expression and inflammatory mediators levels such as tumor necrosis factor-α, interleukin-6 and cyclooxygenase-II. Hepatic I/R caused down-regulation of endothelial nitric oxide synthase and upregulation of inducible nitric oxide synthase expressions. CAR treatment before hepatic I/R resulted in the restoration of liver enzymes. Administration of CAR caused a significant correction of oxidative stress and inflammation markers as well as modulates the expression of endothelial and inducible nitric oxide synthase. Conclusions: CAR protects liver from I/R injury through reduction of the oxidative stress and inflammation, and modulates endothelial and inducible nitric oxide synthase expressions.


2018 ◽  
Vol 30 (2) ◽  
pp. 205-217 ◽  
Author(s):  
Bisi O. Adeoye ◽  
Ademola A. Oyagbemi ◽  
Ebunoluwa R. Asenuga ◽  
Temidayo O. Omobowale ◽  
Adeolu A. Adedapo

Abstract Background Cisplatin (CP) is a novel drug of choice in the treatment of cancer but its major limitation is nephrotoxicity, which is dose limiting. Andrographis paniculata (AP) is a common Indian dietary component. It is well known for its medicinal properties. This present study investigated the nephroprotective effect of ethanol leaf extract of Andrographis paniculata (EEAP) on CP-induced nephrotoxicity. Methods CP was used to induce nephrotoxicity in male Wistar rats to study the effect of EEAP on renal damages using hematological parameters, biochemical parameters, histology, and immunohistochemistry studies. Results The effects of EEAP were determined by CP-induced changes in different kidney tissue on antioxidant enzymes, markers of oxidative stress, serum creatinine, and urine parameters. Administration of EEAP (200 mL/kg and 400 mg/kg orally), prior to and following a single dose CP treatment (10 mg/kg i.p), significantly mitigated the CP-induced decrease in antioxidant enzymes, and increase in markers of oxidative stress, serum creatinine, and urinary protein. On histopathological examination of the kidney tissue, there was severe glomerular degeneration and infiltration of inflammatory cells in CP only treated rats, mild glomerular degeneration, and infiltration of inflammatory cells in EEAP pre-treated rats. Furthermore, EEAP activated Nrf2 and mitigated Kim-1 pathways in CP-induced nephrotoxicity. Conclusions The results showed the protective effect of EEAP against CP-induced nephrotoxicity.


Author(s):  
Mohamed A. Kandeil ◽  
Sana’a O. Ebrahim ◽  
Basant M. Mahmoud

Aims: Rheumatoid arthritis (RA) is characterized by the onset of oxidative stress. This study aimed to evaluate the enhancing of extra virgin olive (EVOO) and Evening primrose oil (EPO) on oxidative stress and liver enzymes in male Wistar rats and compare between them. Place and Duration: Faculty of Science biochemistry department, Between July 2018 and August 2018. Methodology: A Subcutaneous injection of 200 µl of Freund's complete adjuvant into a footpad of the right hind leg of Wistar male rats at two consecutive days induced RA. Rats received EVOO and EPO daily by oral gavage needle with gauge 18 at doses of 5 mg/kg b.wt./day. for 10 and 21 days. No loss was recorded in the experimental rats. Results: A significant depletion in serum Reduced glutathione content (GSH), glutathione peroxidase (GPX), and glutathione s transferase activities (GST) in arthritic rats compared to normal rats after 10 and 21 days of induction which improved significantly after 10 and 21 days of EPO and EVOO treatments. EPO and EVOO treatments for 21 days increased the GSH and GPX compared to 10 days treatments while no difference in GST activity. EVOO treatment improved GSH and GPX after 10 and 21 days than EPO treatment. The elevated uric acid levels in arthritic rats were markedly ameliorated as a result of EVOO and EPO treatment administration. Increased lipid peroxidation products (MDA), rheumatoid factor, and liver enzyme (Alanine transaminase ALT and Aspartate transaminase AST) were recorded in arthritic rats and they significantly progressed after EPO and EVOO treatments for 10 and 21 days but EVOO had the best effect at 21 days. Conclusion: EVOO and EPO showed significant antioxidant efficacies and improved affected liver enzymes due to rheumatoid arthritis onset. When comparing olive oil has more antioxidant properties than evening primrose oil, so we recommend more studies on olive oil combination with anti-arthritic medications to improve their efficacies with less toxicity.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Fatiqa Zafar ◽  
Nazish Jahan ◽  
Khalil-Ur-Rahman ◽  
Ahrar Khan ◽  
Waseem Akram

The present study was designed to develop safer, effective, and viable cardioprotective herbal combination to control oxidative stress related cardiac ailments as new alternatives to synthetic drugs. The synergetic cardioprotective potential of herbal combination of four plantsT. arjuna(T.A.),P. nigrum(P.N),C. grandiflorus(C), andC. oxyacantha(Cr) was assessed through curative and preventive mode of treatment. In preventive mode of treatment, the cardiac injury was induced with synthetic catecholamine (salbutamol) to pretreated rabbits with the proposed herbal combination for three weeks. In curative mode of treatment, cardiotoxicity/oxidative stress was induced in rabbits with salbutamol prior to treating them with plant mixture. Cardiac marker enzymes, lipids profile, and antioxidant enzymes as biomarker of cardiotoxicity were determined in experimental animals. Rabbits administrated with mere salbutamol showed a significant increase in cardiac marker enzymes and lipid profile and decrease in antioxidant enzymes as compared to normal control indicating cardiotoxicity and myocardial cell necrosis. However, pre- and postadministration of plant mixture appreciably restored the levels of all biomarkers. Histopathological examination confirmed that the said combination was safer cardioprotective product.


Sign in / Sign up

Export Citation Format

Share Document