scholarly journals Influence of Various Soil and Water Conservation Methods on the Moisture Balance at Coffee Plant Root Zone

Author(s):  
Lina Saraswati ◽  
Sugeng Prijono ◽  
Budi Prasetya

Background: The study of the moisture balance can be used to suppose the plants water requirement and the plants water use efficiency. The moisture balance influenced by climate factor, therefore climate change can affect the moisture balance especially in rainfed. Therefore, an effort is needed to manage soil moisture in rainfed as a climate change mitigation measure: soil and water conservation. This study aimed to determine the influence of soil and water conservation on the moisture balance in the coffee root zone. Methods: This study was conducted at people’s coffee plantation of Argotirto village, Sumbermanjing Wetan District, Malang Regency, located between 8.2411-8.1443 S and 112.4031-112.4634 E. Observation were made on February to November 2020, divided into observations in the wet season, dry seasons and flowering period. The observation plots consisted of terraced plot (P0), terraced + straight silt pit (P1), terraced + L-shaped silt pit (P2) and terrace + biopore (P3). The observation variables were: soil physical characteristics and moisture balance components there were precipitation, percolation, runoff, evapotranspiration and soil moisture storage. Result: At P1, the runoff depth was 80.89% lower and the percolation was 44.22% higher than P0. The total soil moisture storage at P1 was 20.06% higher than P0 in the dry season, indicating that P1 could increase the period of surplus moisture in the dry season.

2015 ◽  
Vol 12 (8) ◽  
pp. 8419-8457 ◽  
Author(s):  
N. Sriwongsitanon ◽  
H. Gao ◽  
H. H. G. Savenije ◽  
E. Maekan ◽  
S. Saengsawang ◽  
...  

Abstract. With remote sensing we can readily observe the Earth's surface, but looking under the surface into the root zone of vegetation is still a major challenge. Yet knowledge on the dynamics of soil moisture in the root zone is essential for agriculture, land–atmosphere interaction and hydrological modelling, alike. In this paper we develop a novel approach to monitor the soil moisture storage deficit in the root zone of vegetation, by using the remotely sensed Normalised Difference Infrared Index (NDII) in the Upper Ping River Basin (UPRB) in northern Thailand. Satellite data from the Moderate Resolution Imaging Spectro-radiometer (MODIS) was used to evaluate the NDII over an 8 day period, covering the study area from 2001 to 2013. The results show that NDII values decrease sharply at the end of the wet season in October and reach lowest values near the end of the dry season in March. The values then increase abruptly after rains have started, but vary in an insignificant manner from the middle to the late rainy season. The NDII proves to be a very strong proxy for moisture storage deficit in the root zone, which is a crucial component of hydrological models. In addition, the NDII appears to be a reliable indicator for the temporal and spatial distribution of drought conditions in the UPRB. The 8 day average NDII values were found to correlate very well with the 8 day average soil moisture content (SU) simulated by FLEXL (rainfall–runoff model) at 8 runoff stations during the dry season – giving an average R2 value 0.87 on an exponential relationship, while for the wet season it reduced to be around 0.61. Apparently, the NDII is an effective index for the moisture storage in the root zone during the time of moisture deficit, and a powerful indicator to assess droughts. In the dry season, when plants are exposed to water stress, the leaf-water deficit increases steadily. Once leaf-water is close to saturation – mostly at the end of the wet season – leaf characteristics and NDII values do not vary significantly, causing lower correlation between NDII and Su in the wet season. However, the correlations between NDII and Su still remain high for both seasons and therefore the product can be used to define drought situations throughout the year and be of use to water management.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1054 ◽  
Author(s):  
Qiaoling Guo ◽  
Yaoyao Han ◽  
Yunsong Yang ◽  
Guobin Fu ◽  
Jianlin Li

The streamflow has declined significantly in the coal mining concentrated watershed of the Loess Plateau, China, since the 1970s. Quantifying the impact of climate change, coal mining and soil and water conservation (SWC), which are mainly human activities, on streamflow is essential not only for understanding the mechanism of hydrological response, but also for water resource management in the catchment. In this study, the trend of annual streamflow series by Mann-Kendall test has been analyzed, and years showing abrupt changes have been detected using the cumulative anomaly curves and Pettitt test. The contribution of climate change, coal mining and SWC on streamflow has been separated with the monthly water-balance model (MWBM) and field investigation. The results showed: (1) The streamflow had an statistically significant downward trend during 1955–2013; (2) The two break points were in 1979 and 1996; (3) Relative to the baseline period, i.e., 1955–1978, the mean annual streamflow reduction in 1979–1996 was mainly affected by climate change, which was responsible for a decreased annual streamflow of 12.70 mm, for 70.95%, while coal mining and SWC resulted in a runoff reduction of 2.15 mm, 12.01% and 3.05mm, 17.04%, respectively; (4) In a recent period, i.e., 1997–2013, the impact of coal mining on streamflow reduction was dominant, reaching 29.88 mm, 54.24%. At the same time, the declining mean annual streamflow induced through climate change and SWC were 13.01 mm, 23.62% and 12.20 mm, 22.14%, respectively.


1967 ◽  
Vol 69 (1) ◽  
pp. 95-101 ◽  
Author(s):  
W. R. Stern

In a series of five irrigated cotton sowings (T2, T7, T9, T11, T14) evapotranspiration (Et) was determined for the period between October 1961 and October 1962 by observing frequently the changes in soil moisture storage, calculating through drainage, and solving for evapotranspiration in the water balance equation. Thus a water balance was obtained for each sowing extending over the entire crop.The average evapotranspiration in wet season sowings was of the order of 6·5 mm day−1 and in dry season sowings of the order of 4·5 mm day−1. The highest evapotranspiration values ranged between 10 and 12 mm day−1 in T2, T7 and T9 and between 7 and 9·5 mm day−1 in T11 and T14.


2020 ◽  
Author(s):  
Jorge A. Delgado ◽  
Victor H. Barrera Mosquera ◽  
Jeffrey R. Alwang ◽  
Alexis Villacis-Aveiga ◽  
Yamil E. Cartagena Ayala ◽  
...  

Eos ◽  
2007 ◽  
Vol 88 (11) ◽  
pp. 136 ◽  
Author(s):  
Jurgen D. Garbrecht ◽  
Jean L. Steiner ◽  
Craig A. Cox

2019 ◽  
Vol 11 (21) ◽  
pp. 2580 ◽  
Author(s):  
Yifei Tian ◽  
Lihua Xiong ◽  
Bin Xiong ◽  
Ruodan Zhuang

Integration of satellite-based data with hydrological modelling was generally conducted via data assimilation or model calibration, and both approaches can enhance streamflow predictions. In this study, we assessed the feasibility of another approach that uses satellite-based soil moisture data to directly estimate the parameter β to represent the degree of the spatial distribution of soil moisture storage capacity in the semi-distributed Hymod model. The impact of using historical root-zone soil moisture data from the Soil Moisture Active Passive (SMAP) mission on the prior estimation of the parameter β was explored. Two different ways to incorporate the root-zone soil moisture data to estimate the parameter β are proposed, i.e., one is to derive a priori distribution of β , and the other is to derive a fixed value for β . The simulations of the Hymod models employing the two ways to estimate β are compared with the results produced by the original model, i.e., the one without employing satellite-based data to estimate the parameter β , at three study catchments (the Upper Hanjiang River catchment, the Xiangjiang River catchment, and the Ganjiang River catchment). The results illustrate that the two ways to incorporate the SMAP root-zone soil moisture data in order to predetermine the parameter β of the semi-distributed Hymod model both perform well in simulating streamflow during the calibration period, and a slight improvement was found during the validation period. Notably, deriving a fixed β value from satellite soil moisture data can provide better performance for ungauged catchments despite reducing the model freedom degrees due to fixing the β value. It is concluded that the robustness of the Hymod model in predicting the streamflow can be improved when the spatial information of satellite-based soil moisture data is utilized to estimate the parameter β .


Sign in / Sign up

Export Citation Format

Share Document