scholarly journals Physiological alterations in wheat during drought stress tolerance at different growth stages

2022 ◽  
Vol 11 (1) ◽  
Zahid Akram
2020 ◽  
Kai Liu ◽  
Mingjuan Li ◽  
Bin Zhang ◽  
Yanchun Cui ◽  
Xuming Yin ◽  

Abstract BackgroundGrain yield is a polygenic trait influenced by environmental and genetic interactions at all growth stages of the cereal plant. However, the molecular mechanisms responsible for coordinating the trade-off or cross-talk between these traits remain elusive.ResultsWe characterized the hitherto unknown function of four STRESS_tolerance and GRAIN_LENGTH (OsSGL) Poaceae ortholog genes, all encoding DUF1645 domain-containing proteins, in simultaneous regulation of grain length, grain weight, and drought stress-tolerance in rice. In normal growth conditions, the four ortholog genes were mainly expressed in the developing roots and panicles of the corresponding species. Over-expressing or heterologous high-level expressing Poaceae OsSGL ortholog genes conferred remarkably increased grain length, weight, and seed setting percentage, as well as significantly improved drought-stress tolerance in transgenic rice. Microscopical analysis also showed that the transgene expression promoted cell division and development. RNA-seq and qRT-PCR analyses revealed 73.8% (18,711) overlapped DEGs in all transgenic plants. Moreover, GO and KEGG analyses of different comparisons revealed that the key DEGs participating in drought stress-response belonged to hormone (especially auxin and cytokinin) pathways, and signaling processes were apparently affected in the young panicles. ConclusionTogether, these results suggest the four OsSGL orthologs perform a conserved function in regulating stress-tolerance and cell growth by acting via a hormone biosynthesis and signaling pathway. It may also induce a strategy for tailor-made crop yield improvement.

2020 ◽  
Vol 53 (1) ◽  
Asma Asma ◽  
Iqbal Hussain ◽  
Muhammad Yasin Ashraf ◽  
Muhammad Arslan Ashraf ◽  
Rizwan Rasheed ◽  

Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1971
Xingyang Song ◽  
Guangsheng Zhou ◽  
Qijin He ◽  
Huailin Zhou

Drought stress has adverse effects on crop growth and yield, and its identification and monitoring play vital roles in precision crop water management. Accurately evaluating the effect of drought stress on crop photosynthetic capacity can provide a basis for decisions related to crop drought stress identification and monitoring as well as drought stress resistance and avoidance. In this study, the effects of different degrees of persistent drought in different growth stages (3rd leaf stage, 7th leaf stage and jointing stage) on the maximum carboxylation rate at a reference temperature of 25 °C (Vcmax25) of the first fully expanded leaf and its relationship to the leaf water content (LWC) were studied in a field experiment from 2013 to 2015. The results indicated that the LWC decreased continuously as drought stress continued and that the LWC decreased faster in the treatment with more irrigation. Vcmax25 showed a decreasing trend as the drought progressed but had no clear relationship to the growth stage in which the persistent drought occurred. Vcmax25 showed a significantly parabolic relationship (R2 = 0.701, p < 0.001) with the LWC, but the different degrees of persistent drought stress occurring in different growth stages had no distinct effect on the LWC values when Vcmax25 reached its maximum value or zero. The findings of this study also suggested that the LWC was 82.5 ± 0.5% when Vcmax25 reached its maximum value (42.6 ± 3.6 μmol m−2 s−1) and 67.6 ± 1.2% (extreme drought) when Vcmax25 reached zero. These findings will help to improve crop drought management and will be an important reference for crop drought identification, classification and monitoring as well as for the development of drought monitoring and early warning systems for other crops or maize varieties.

2019 ◽  
Vol 13 (01) ◽  
pp. 35-44 ◽  
Willian Giordani ◽  
Leandro Simões Azeredo Gonçalves ◽  
Larissa Alexandra Cardoso Moraes ◽  
Leonardo Cesar Ferreira ◽  

2015 ◽  
Vol 96 ◽  
pp. 83-89 ◽  
M.S. Sujith Kumar ◽  
Kishwar Ali ◽  
Anil Dahuja ◽  
Aruna Tyagi

2018 ◽  
Vol 499 (4) ◽  
pp. 777-782 ◽  
Jinhua Li ◽  
Yaling Wang ◽  
Juanjuan Wei ◽  
Yu Pan ◽  
Chenggang Su ◽  

Trees ◽  
2012 ◽  
Vol 27 (1) ◽  
pp. 285-296 ◽  
Diego A. López Lauenstein ◽  
María E. Fernández ◽  
Aníbal R. Verga

Sign in / Sign up

Export Citation Format

Share Document