scholarly journals Soils in the Bulia micro watershed of Gorontalo province, Indonesia, and their quality assessment

2021 ◽  
pp. 104-136
Author(s):  
. Nurdin ◽  
Mochtar Lutfi Rayes ◽  
. Soemarno ◽  
. Sudarto ◽  
Endang Listyarini ◽  
...  

Ten representative pedons from the Bulia micro watershed of Gorontalo Province, Indonesia, were characterized and classified to determine its land quality (LQ) class. Angular blocky, sticky, plastic consistencies and a hard consistency prevailed in the soil structure. In the alluvial plains the soil texture is dominated by the clay fraction, while in the hills and volcanic mountains the sand fraction is dominated. The soils in the Bulia micro watershed also have acid to neutral reaction, with the range of very low to high OC (organic carbon) levels, the reserve of exchangeable bases was dominated by Ca2+ in two series patterns, namely: Ca2+ > Mg+ > Na+ > K+ and Ca2+ > Na+ > Mg+ > K+, cation exchange capacity (CEC) ranged from low to very high, and the base saturation varied from moderate to very high. The alluvial plain is represented by Inceptisol in P1 and Typic Humustepts (P7), also by Oxic Humustepts (P3), then Mollisol on P4 (Typic Argiudolls) and Typic Haplustolls (P6), Alfisol on P5 (Typic Paleustalfs). Entisol on P2 (Typic Ustipsamments) was found in volcanic mountains and P9 (Typic Paleustolls) P8 (Ultic Paleustalfs), P10 (Inceptic Haplustalfs) are typical of volcanic hills. On the alluvial plains the land was categorized as the LQ class II, III and IV, the volcanic mountains were the LQ class IV, while the land on the volcanic hills was categorized as the LQ class VI. River bank erosion on the land river terraces can be held by the manufacture of gabions, talud, cliff reinforcement plants and terraces. The soil temperatures and high clay content can be regulated by mulching and organic materials.

1969 ◽  
Vol 53 (2) ◽  
pp. 113-117
Author(s):  
Raúl Pérez Escolar ◽  
M. A. Lugo López

Data are presented in this paper on the availability of moisture in Catalina clay, an Oxisol, and Cialitos clay, an Ultisol. The soils are very high in clay content and fairly high in organic-matter content. Catalina clay is high in free iron oxides with 18.2 percent, while Cialitos clay has 13 percent. Striking differences are evident as to cation exchange capacity with values of over 20 meq. for Cialitos and only around 12 meq. for Catalina. Both soils have low available water-supplying power. However, when the individual aggregates are considered, the smaller ones retain larger volumes of available water than the larger ones. This is so because moisture retained at higher tensions decreases with decreasing aggregate size, while that retained at lower tensions increases with decreasing aggregate size. These results are explained on the basis of the larger volume of small pores in larger aggregates and the larger voids created in-between smaller aggregates.


Geotechnics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 260-306
Author(s):  
Kexin Yin ◽  
Anne-Laure Fauchille ◽  
Eugenia Di Filippo ◽  
Panagiotis Kotronis ◽  
Giulio Sciarra

Natural soils are usually heterogeneous and characterized with complex microstructures. Sand–clay mixtures are often used as simplified soils to investigate the mechanical properties of soils with various compositions (from clayey to sandy soils) in the laboratory. Performing laboratory tests on a sand–clay mixture with definite clay fraction can provide information to understand the simplified soils’ mechanical behavior and better predict natural soils’ behavior at the engineering scale. This paper reviews previous investigations on sand–clay mixture and soil–structure interface direct shear test. It finds that even though there are many investigations on sand–clay mixtures and soil–structure interfaces that consider pure sand or pure clay, limited data on the mechanical behavior of the interface between sand–clay mixture and structure materials are available. Knowledge is missing on how the clay content influences the mechanical behavior of interface and how the soil particles’ arrangement changes as the clay content increases. Further study should be performed to investigate the interface in terms of a reconstituted sand–clay mixture and structure by interface direct shear test, to highlight the influence of clay fraction on the interface response, under various loading conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Junun Sartohadi ◽  
Nur Ainun Harlin Jennie Pulungan ◽  
Makruf Nurudin ◽  
Wahyudi Wahyudi

The clay layers at hilly regions in the study area were very thick. The presence of very thick clay caused several difficulties in terms of environmental management, particularly in reducing georisk due to landslide. However, initial observations proved that areas of active landslides had better vegetation cover. The objective of this study was to find out ecological roles of landslides in livelihood in the Middle Bogowonto Watershed. The ecological roles of landslide were examined through field empirical evidences. Texture, bulk density, permeability, structure, and index plasticity were conducted for analyses of soil physical properties. Stepwise interpretation was made using 1 : 100,000–1 : 25,000 Indonesian topographic maps and remote sensing images of 30 m–<10 m spatial resolution. The results showed that landslides formed three landform zones: residual, erosional, and depositional zones. The area that did not slid, the residual zone, had massive soil structure and very hard consistency. Crops cultivated in this zone did not grow well. In the areas of active landslide, the environmental conditions seemed to be more favorable for living creatures. The landslides resulted in depositional zones with gentle slopes (4° to 15°), higher water availability, and easier soil management. The landslides also acted as the rearrangement process of landforms for better living environment.


2016 ◽  
Vol 30 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Katharina M. Keiblinger ◽  
Lisa M. Bauer ◽  
Evi Deltedesco ◽  
Franz Holawe ◽  
Hans Unterfrauner ◽  
...  

Abstract Agricultural intensification, especially enhanced mechanisation of soil management, can lead to the deterioration of soil structure and to compaction. A possible amelioration strategy is the application of (structural) lime. In this study, we tested the effect of two different liming materials, ie limestone (CaCO3) and quicklime (CaO), on soil aggregate stability in a 3-month greenhouse pot experiment with three agricultural soils. The liming materials were applied in the form of pulverised additives at a rate of 2 000 kg ha−1. Our results show a significant and instantaneous increase of stable aggregates after quicklime application whereas no effects were observed for limestone. Quicklime application seems to improve aggregate stability more efficiently in soils with high clay content and cation exchange capacity. In conclusion, quicklime application may be a feasible strategy for rapid improvement of aggregate stability of fine textured agricultural soils.


2019 ◽  
Vol 43 ◽  
Author(s):  
Mariana Gabriele Marcolino Gonçalves ◽  
João Carlos Ker ◽  
Fábio Soares de Oliveira ◽  
Letícia Onara Silva Ramos ◽  
Anderson Almeida Pacheco ◽  
...  

ABSTRACT Soils of the semi-arid region of Minas Gerais have small depth; hard, very hard or even extremely hard consistency when dry and very plastic and very sticky when moist; columnar or angular blocky structure and significant cracking along the profile in the dry period, however they have not been deeply studied yet. Thus, the aim of this study was to detail the genesis of Luvisols in the Semi-arid Depression of the Jequitinhonha Valley (MG), incompassing morphological, physical, chemical, micromorphological and mineralogical attributes, and their relationships. The lack of illuviation coatings in the micromorphological analysis is in line with the expressionless and unclear clay skins observed in the top of the B horizon in only one out of the four soil profiles during the field work. Considering the occurrence of expandable 2:1 clay minerals, which can easily modify such pedological feature, caution is recommended in relation to soil genesis interpretation. The lateral loss of the clay fraction from the superficial horizons is highlighted as the main formation process of the Luvisols studied. The cation exchange capacity of these soils revealed remarkable lower values for the Luvisols in semi-arid Brazilian regions.


Soil Research ◽  
2004 ◽  
Vol 42 (1) ◽  
pp. 39 ◽  
Author(s):  
R. J. Harper ◽  
R. J. Gilkes

The clay contents of sandy soils in south-western Australia are often modified, either intentionally or inadvertently, as a result of management practices and erosion. Although the strength of sandy surfaced soils has previously been shown to be related to clay content, in natural soils the effects of induced changes in clay content on soil strength have not been assessed.Increasing amounts of subsoil clay were added to their respective topsoils in increments ranging from 5 to 20% by weight, and these systematically increased soil strength. A strong log–log relationship between clay content and soil strength explained 69% of the variation, with soil strength further affected by sodicity. This enhancement of soil strength has implications for the practice of claying water-repellent soils, particularly where non-uniform application or poor incorporation results in high concentrations of clay, where very high rates (e.g. 300 t/ha) of application are used, or where clayey subsoils are brought to the surface by deep cultivation or the removal of topsoils by erosion.Drift sand, with a clay content of around 1% and negligible strength, was added in increasing increments to typical topsoils, over the range of 0–100% by weight to replicate the effects of wind-induced deposition and winnowing of clay particles. Increasing additions of drift sand systematically decreased soil strength, with a log–log relationship between clay content and strength of the mixtures explaining 81% of the variation. This suggests that wind erosion, and the winnowing of clay or deposition of drift sand, permanently destabilises soil surfaces by reducing soil strength. It is feasible that strategic applications of sand on the surfaces of soils affected by hardsetting may reduce soil strength and encourage soil structure development and seedling emergence.


1977 ◽  
Vol 25 (3) ◽  
pp. 170-181
Author(s):  
R. Brinkman

The Roi Et soil, which occurs on the extensive seasonally wet low terrace, is a silt loam with low clay contents in the surface horizon; the clay content increases with depth. The soil is seasonally water-saturated and seasonally dry, has considerable porosity, but has a dense ploughpan at a depth of about 0.2 m and a dense substratum below 1.4 m. The soil is strongly acid with a low base saturation and a very low cation exchange capacity. The silt and sand are 98% quartz. Disordered kaolinite is the main clay mineral. About a fifth of the clay fraction is soil chlorite - a strongly Al-interlayered vermiculite in the upper horizons but partially Al-interlayered in the substratum. The interlayers contain a small amount of ferrous iron. The quartz contents in the clay fractions range from one tenth in most of the profile to about three tenths in the surface horizon, with a corresponding decrease in kaolinite. The kaolinite in the upper horizons shows signs of dissolution. These data are in accordance with hypothetical clay eluviation-illuviation and long-continued Fe redistribution and ferrolysis, the ferrolysis involving clay alteration and dissolution under conditions of alternating reduction and oxidation of Fe. (Abstract retrieved from CAB Abstracts by CABI’s permission)


2018 ◽  
Vol 111 (1) ◽  
pp. 121 ◽  
Author(s):  
Rok TURNIŠKI ◽  
Helena GRČMAN

Eluvial-illuvial processes plays key role in pedogenesis, especially in the development of leached soils. As reported in Slovenian soil map 1 : 25.000 leached soils cover 2,3 % of Slovenian territory. They occur on different parent materials, mostly on flat relief preserved from erosion and colluvial processes. The aim of our study is the evaluation of their morpohological, physical and chemical properties, spatial distribution and dependency on soil forming factors, especially on parent material. Pedological properties are demonstrated according to analytical and descriptive data of 49 leached soils from the pedological base of Soil Information System of Slovenia. Obvious leaching processes are clearly recognized in almost all profiles of leached soils. Eluvial horizon in comparison to illuvial horizon has lower pH value, which is in average 4,4 and 4,6 for E and Bt horizon respectively, brighter color, lower base saturation (in average for 16,6 %) and lower CEC (in average for 5,5 mmol<sub>c</sub> 100 g <sup>-1</sup> soil). On average ratio of clay content between illuvial and eluvial horizon is 1,63. In the 75 % of all studied leached soils this ratio is above 1,38. After evaluation, according to WRB classification, an argic horizon is identified only in 40 soil profiles, while other 9 profiles do not match criteria of sufficient textural differentiation or there is not enough data to classify them. Detailed overview of the WRB criteria for argic horizons (cation exchange capacity of clay fraction and base saturation in argic horizons) reveals that Luvisols and Alisols are the most widespread groups in Slovenia among leached soil. Against expectations based on different references, we do not determined Acrisols within Soil Map Database.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Mardi Wibowo

Since year 1977 until 2005, PT. ANTAM has been exploited nickel ore resources at Gebe Island – Center ofHalmahera District – North Maluku Province. Mining activity, beside give economically advantages also causedegradation of environment quality espicially land quality. Therefore, it need evaluation activity for change ofland quality at Gebe Island after mining activity.From chemical rehabilitation aspect, post mining land and rehabilitation land indacate very lack and lackfertility (base saturated 45,87 – 99,6%; cation exchange capacity 9,43 – 12,43%; Organic Carbon 1,12 –2,31%). From availability of nutrirnt element aspect, post mining land and rehabilitation land indicate verylack and lack fertility (nitrogen 0,1 – 1,19%). Base on that data, it can be concluded that land reclamationactivity not yet achieve standart condition of chemical land.Key words : land quality, post mining lan


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 536d-536
Author(s):  
Rina Kamenetsky

The influence of postharvest temperature on the flowering response of Eremurus was studied. The plants were harvested at four different stages of development and were separated into three groups. The first group was immediately exposed to 2 °C, the second group to 20 °C followed by 2 °C, and the third group to 20 °C followed by 32 °C and, subsequently, 2 °C. Scanning electron microscopy (SEM) was used for concurrent morphological analysis of floral development. Application of 2 °C to the plants in the initial stage of floral development caused plant destruction and death, while the same treatment applied at the stage of full differentiation promoted normal flowering. Temperatures of 20 °C and, especially, 32 °C, significantly improved flowering of the plants harvested in the early stages of florogenesis, whereas the same treatment applied to the plants harvested at the end of flower differentiation did not affect the flowering process. A developmental disorder, which we term “Interrupted Floral Development” (IFD), was observed only in the plants harvested when the racemes were fully differentiated. This was probably caused by the very high air and soil temperatures that prevail in Israel during the summer. The extent of floral differentiation has a determinant role in subsequent scape elongation and flowering.


Sign in / Sign up

Export Citation Format

Share Document