scholarly journals Resistensi Antibiotik pada Escherichia coli yang Diisolasi dari Daging Ayam pada Pasar Tradisional di Kota Bogor (ANTIBIOTIC RESISTANCE IN ESCHERICHIA COLI ISOLATED FROM CHICKEN MEAT OF TRADITIONAL MARKETS IN THE CITY OF BOGOR)

2019 ◽  
Vol 20 (1) ◽  
pp. 125
Author(s):  
Connie Januari ◽  
Mirnawati Bachrum Sudarwanto ◽  
Trioso Purnawarman

Antibiotic use in farm is spread widely to treat of poultry disease including therapy, supportive or preventive use and as afeed additive to improve chicken performance. The negative effects of antibiotic use can increase the level of bacterial resistance to antibiotics. This study aimed to investigate on antibiotic resistance in Escherichia coli isolated from chicken meat that were sold in Traditional Market of Bogor City. A total of 175 samples of chicken meat were taken by purposive sampling method, out of 175 found 50 positive samples of E. coli. The samples were subjected to E. coli examination and the isolated E. coli were tested for the antibiotic resistance using eight antibiotics, i.e., amoxicillin, cefotaxime, colistin, nalidixid acid, streptomycin, erythromycin, oxytetracillin, and tetracycline. The study was conducted by using the disk diffusion method on Muller-Hinton agar according to the Clinical and Laboratory Standards Institute guidelines. The study showed E. coli isolated from chicken meat were resistance towards amoxicilin (90%), colistin (94%), nalidixid acid (86%), streptomycin (98%), erythromycin (98%), oxytetracillin (84%), tetracycline (86%), and cefotaxime antibiotics (12%). The proportion of multidrugresistant was 99%. The higher of multidrug-resistant indicated the E. coli would be a threat to public and environmental health. 

2020 ◽  
Vol 83 (12) ◽  
pp. 2200-2208
Author(s):  
NAHLA O. ELTAI ◽  
HADI M. YASSINE ◽  
TAHRA EL-OBEID ◽  
SARA H. AL-HADIDI ◽  
ASMAA A. AL THANI ◽  
...  

ABSTRACT The spread of antibiotic resistance among bacterial strains has been associated with consumption of food contaminated with both pathogenic and nonpathogenic bacteria. The objective of this study was to determine the prevalence of antibiotic resistant Escherichia coli isolates in local and imported retail raw chicken meat in Qatar. A total of 270 locally produced (chilled) and imported (chilled or frozen) whole chicken carcasses were obtained from three Hypermarket stores in Qatar. The 216 E. coli isolates recovered from the chicken samples were subjected to antibiotic susceptibility testing with the disk diffusion method. Extended-spectrum β-lactamase (ESBL) production was evaluated with the double disk synergy test. Isolates harboring colistin resistance were identified with a multiplex PCR assay and DNA sequencing. Nearly 89% (192) of the 216 isolates were resistant to at least one of the 18 antibiotics tested. Isolates from local and imported chicken carcasses had relatively higher resistance to sulfamethoxazole (62% of isolates), tetracycline (59.7%), ampicillin and trimethoprim (52.3% each), ciprofloxacin (47.7%), cephalothin (45.4%), and colistin (31.9%). Less resistance was found to amoxicillin–clavulanic acid (6%), ceftriaxone (5.1%), nitrofurantoin (4.2%), piperacillin-tazobactam (4.2%), cefepime (2.3%), meropenem (1.4%), ertapenem (0.9%), and amikacin (0.9%). Nine isolates (4.2%) were ESBL producers, and 137 (63.4%) were multidrug resistant. The percentages of multidrug-resistant, ESBL-producing, and colistin resistant isolates were significantly higher among isolates from local chilled than from imported chilled and frozen chicken samples. Our findings indicate the high prevalence of antibiotic-resistant E. coli in chicken meat sold at retail in Qatar. HIGHLIGHTS


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 447
Author(s):  
Barbara Kot ◽  
Agata Grużewska ◽  
Piotr Szweda ◽  
Jolanta Wicha ◽  
Urszula Parulska

The aim of this study was to determine antibiotic resistance patterns and the prevalence of uropathogenes causing urinary tract infections (UTIs) in patients hospitalized in January–June 2020 in central Poland. Antimicrobial susceptibility testing was performed using the disk-diffusion method. Escherichia coli (52.2%), Klebsiella pneumoniae (13.7%), Enterococcus faecalis (9.3%), E. faecium (6.2%), and Proteus mirabilis (4,3%) were most commonly isolated from urine samples. E. coli was significantly more frequent in women (58.6%) (p = 0.0089) and in the age group 0–18, while K. pneumoniae was more frequent in men (24.4%) (p = 0.0119) and in individuals aged 40–60 and >60. Gram-negative species showed resistance to ampicillin. K. pneumoniae were resistant to amoxicillin plus clavulanic acid (75.0%), piperacillin plus tazobactam (76.2%), cefotaxime (76.2%), cefuroxime (81.0%), ciprofloxacin (81.0%), and trimethoprim plus sulphamethoxazole (81.0%). Carbapenems were effective against all E. coli and P. mirabilis. Some K. pneumoniae (13.6%) produced metallo-β-lactamases (MBLs). E. coli (22.6%), K. pneumoniae (81.8%), and all E. faecium were multidrug-resistant (MDR). Some E. coli (26.2%), K. pneumoniae (63.6%), and P. mirabilis (14.3%) isolates produced extended-spectrum beta-lactamases (ESBL). Vancomycin-resistant E. faecium was also found. This study showed that the possibilities of UTIs therapy using available antibiotics become limited due to the increasing number of antibiotic-resistant uropathogens.


Animals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 396 ◽  
Author(s):  
Michaela Sannettha van den Honert ◽  
Pieter Andries Gouws ◽  
Louwrens Christiaan Hoffman

Studies have shown that antibiotic resistance among wild animals is becoming a public health concern, owing to increased contact and co-habitation with domestic animals that, in turn, results in increased human contact, indirectly and directly. This type of farming practice intensifies the likelihood of antibiotic resistant traits in microorganisms transferring between ecosystems which are linked via various transfer vectors, such as rivers and birds. This study aimed to determine whether the practice of wildlife supplementary feeding could have an influence on the antibiotic resistance of the bacteria harboured by the supplementary fed wildlife, and thus play a potential role in the dissemination of antibiotic resistance throughout nature. Escherichia coli and Enterococcus were isolated from the faeces of various wildlife species from seven different farms across South Africa. The Kirby-Bauer disk diffusion method was used according to the Clinical and Laboratory Standards Institute 2018 guidelines. The E. coli (F: 57%; N = 75% susceptible) and Enterococcus (F: 67%; N = 78% susceptible) isolates from the supplementary fed (F) wildlife were in general, found to be more frequently resistant to the selection of antibiotics than from those which were not supplementary fed (N), particularly towards tetracycline (E. coli F: 56%; N: 71%/Enterococcus F: 53%; N: 89% susceptible), ampicillin (F: 82%; N = 95% susceptible) and sulphafurazole (F: 68%; N = 98% susceptible). Interestingly, high resistance towards streptomycin was observed in the bacteria from both the supplementary fed (7% susceptible) and non-supplementary fed (6% susceptible) wildlife isolates. No resistance was found towards chloramphenicol and ceftazidime.


Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 587
Author(s):  
Momna Rubab ◽  
Deog-Hwan Oh

Shiga toxin-producing Escherichia coli (STEC) is an enteric pathogen that causes several gastrointestinal ailments in humans across the world. STEC’s ability to cause ailment is attributed to the presence of a broad range of known and putative virulence factors (VFs) including those that encode Shiga toxins. A total of 51 E. coli strains belonging to serogroups O26, O45, O103, O104, O113, O121, O145, and O157 were tested for the presence of nine VFs via PCR and for their susceptibility to 17 frequently used antibiotics using the disc diffusion method. The isolates belonged to eight different serotypes, including eight O serogroups and 12 H types. The frequency of the presence of key VFs were stx1 (76.47%), stx2 (86.27%), eae (100%), ehxA (98.03%), nleA (100%), ureC (94.11%), iha (96.07%), subA (9.80%), and saa (94.11%) in the E. coli strains. All E. coli strains carried seven or more distinct VFs and, among these, four isolates harbored all tested VFs. In addition, all E. coli strains had a high degree of antibiotic resistance and were multidrug resistant (MDR). These results show a high incidence frequency of VFs and heterogeneity of VFs and MDR profiles of E. coli strains. Moreover, half of the E. coli isolates (74.5%) were resistant to > 9 classes of antibiotics (more than 50% of the tested antibiotics). Thus, our findings highlight the importance of appropriate epidemiological and microbiological surveillance and control measures to prevent STEC disease in humans worldwide.


2015 ◽  
Vol 9 (05) ◽  
pp. 496-504 ◽  
Author(s):  
Divya Sukumaran ◽  
Abdulla A Mohamed Hatha

Introduction: Escherichia coli strains can cause a variety of intestinal and extraintestinal diseases. Extraintestinal pathogenic E. coli (ExPEC) strains have the ability to cause severe extraintestinal infections. Multidrug resistance among ExPEC could complicate human infections. Methodology: Escherichia coli strains were isolated during the period of January 2010 to December 2012 from five different stations set at Cochin estuary. Susceptibility testing was determined by the disk-diffusion method using nine different antimicrobial agents. A total of 155 strains of Escherichia coli were screened for the presence of virulence factor genes including papAH, papC, sfa/focDE, iutA,and kpsMT II associated with ExPEC. Results: Among the 155 E. coli isolates, 26 (16.77%), carried two or more virulence genes typical of ExPEC. Furthermore, 19.23% of the ExPEC isolates with multidrug resistance were identified to belong to phylogenetic groups B2 and D. Statistically significant association of iutA gene in ExPEC was found with papC (p < 0.001) and kpsMT II (p < 0.001) genes. ExPEC isolates were mainly resistant to ampicillin (23.07%), tetracycline (19.23%), co-trimoxazole (15.38%), and cefotaxime (15.38%). The adhesion genes papAH and sfa/focDE were positively associated with resistance to gentamicin, chloramphenicol, and cefotaxime (p < 0.05). Conclusions: Co-occurrence of virulence factor genes with antibiotic resistance among ExPEC poses considerable threat to those who use this aquatic system for a living and for recreation.


Chemotherapy ◽  
2015 ◽  
Vol 61 (2) ◽  
pp. 72-76 ◽  
Author(s):  
Hamid Lavakhamseh ◽  
Parviz Mohajeri ◽  
Samaneh Rouhi ◽  
Pegah Shakib ◽  
Rashid Ramazanzadeh ◽  
...  

Background:Escherichia coli isolates displaying multidrug-resistance (MDR) are a major health care problem that results in mortality and morbidity. Integrons are DNA elements in E.coli that are related to antibiotic resistance. The aim of this study was to determine class 1 and 2 integrons and MDR in E. coli isolates obtained from patients in two Sanandaj hospitals, located in Iran. Materials and Methods: 120 isolates of E. coli were obtained from clinical specimens (from November 2013 to April 2014), and the susceptibility of E. coli antimicrobial agents was determined using the Kirby-Bauer disk diffusion method according to the CLSI. PCR were applied for detection of class 1 and 2 integrons in E. coli isolates. SPSS software v16 and the χ2 test were used for statistical analysis in order to calculate the association between antibiotic resistance and the presence of integrons (p < 0.05). Results: In a total of 120 E. coli isolates, 42.5% had MDR. Integrons were found in 50.9% of the MDR isolates, and included 47.05% class 1 and 3.92% class 2 integrons. The strains did not have both classes of integrons simultaneously. An association between resistance to antibiotics and integrons was found. Conclusion: Our results showed that int1 and int2 genes present in E. coli isolates obtained from patients cause MDR in this isolates. Since such bacteria are a reservoir for the transmission of MDR bacteria, appropriate programs are necessary to reduce this problem.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1617
Author(s):  
Raouaa Maaroufi ◽  
Olfa Dziri ◽  
Linda Hadjadj ◽  
Seydina M. Diene ◽  
Jean-Marc Rolain ◽  
...  

Hospital environments constitute the main reservoir of multidrug-resistant bacteria. In this study we aimed to investigate the presence of Gram-negative bacteria in one Northwestern Tunisian hospital environment, and characterize the genes involved in bacterial resistance. A total of 152 environmental isolates were collected from various surfaces and isolated using MacConkey medium supplemented with cefotaxime or imipenem, with 81 fermenter bacteria (27 Escherichia coli, and 54 Enterobacter spp., including 46 Enterobacter cloacae), and 71 non-fermenting bacteria (69 Pseudomonas spp., including 54 Pseudomonas aeruginosa, and 2 Stenotrophomonas maltophilia) being identified by the MALDI-TOF-MS method. Antibiotic susceptibility testing was performed by disk diffusion method and E-Test was used to determine MICs for imipenem. Several genes implicated in beta-lactams resistance were characterized by PCR and sequencing. Carbapenem resistance was detected among 12 isolates; nine E. coli (blaNDM-1 (n = 8); blaNDM-1 + blaVIM-2 (n = 1)) and three P. aeruginosa were carbapenem-resistant by loss of OprD porin. The whole-genome sequencing of P. aeruginosa 97H was determined using Illumina MiSeq sequencer, typed ST285, and harbored blaOXA-494. Other genes were also detected, notably blaTEM (n = 23), blaCTX-M-1 (n = 10) and blaCTX-M-9 (n = 6). These new epidemiological data imposed new surveillance strategies and strict hygiene rules to decrease the spread of multidrug-resistant bacteria in this area.


2019 ◽  
Vol 16 (4(Suppl.)) ◽  
pp. 0986
Author(s):  
Al-Hasnawy Et al.

Antibiotic resistance is a problem of deep scientific concern both in hospital and community settings. Rapid detection in clinical laboratories is essential for the judicious recognition of antimicrobial resistant organisms. So, the growth of Uropathgenic Escherichia coli (UPEC) isolates with Multidrug-resistant (MDR) and Extensively Drug-resistant (XDR) profiles that thwart therapy for (UTIs) has been detected and has straight squeezed costs and extended hospital stays. This study aims to detect MDR- and XDR-UPEC isolates. Out of 42 UPEC clinical isolates were composed from UTI patients. The bacterial strains were recognized by standard laboratory protocols. Susceptibility to antibiotic was measured by the standard disk diffusion method Out of 42 Uropathogenic E. coli, 37 (88.09%) were found to be MDR while 5 isolates (11.90%) were XDR. The present study concluded high prevalence of uropathogenic Escherichia coli (UPEC) with Multidrug-resistant (MDR) isolated from urinary tract infection in Babylon province – Iraq.


2017 ◽  
Vol 9 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Haddadi Azam ◽  
Somayeh Mikaili Ghezeljeh ◽  
Shavandi Mahmoud

Abstract Background Multidrug resistance is a serious problem in the treatment of urinary tract infections. Horizontal gene transfer, directed by strong selective pressure of antibiotics, has resulted in the widespread distribution of multiple antibiotic resistance genes. The dissemination of resistance genes is enhanced when they are trapped in integrons. Objectives To determine the prevalence of integrons among multidrug resistant Escherichia coli strains collected from regional hospitals and private clinical laboratories in Alborz province. Methods The susceptibility of 111 clinical Escherichia coli isolates was tested using a Kirby–Bauer disk diffusion method for common antibiotics. Isolates were screened for the production of extended spectrum β-lactamases (ESBLs) using a double disk synergy test. The existence of integrons was confirmed by amplification of the integrase gene and their class determined via analysis of PCR products by PCR-RFLP. Results Isolates showed the highest resistance to amoxicillin. Nitrofurantoin, amikacin, and ceftizoxime were the most effective antibiotics in vitro. Eighty-eight isolates of 111 (79%) were resistant to more than three unrelated drugs. We found 30% of the multidrug resistant isolates harbor integrons. Class 1 and 2 integrons were detected in 25 and 1 isolates, respectively. ESBL screening of strains showed 45 isolates (40%) were positive; 22% of the ESBL-positive isolates carried class 1 integrons and the frequency of MDR in ESBLpositive isolates was 93%. Conclusion The existence of integrons in only 29.5% of multidrug resistant isolates showed that besides integrons, antibiotic resistance genes were probably carried on other transferable elements lacking integrons, such as transposons or plasmids.


Author(s):  
Akbar Ali ◽  
Vijay R. Chidrawar

Aims: Multidrug resistant (MDR) bacteria pose a major public health issuer globally. The genes for antibiotic resistance are transferred vertically in the form of genomic DNA and horizontally in the form of plasmids or transposons. Antibiotic are extensively used in animal farming to treat and prevent animal diseases, and at sub-therapeutic doses, they are used to promote animal growth. This extensive use of antibiotics is causing an increase in resistance among bacteria. More frequent, chicken meat available at retail shops is reported to be contaminated with a variety of drug resistant bacteria including E. Coli. The aim of the present study was to investigate antibiotic resistance in Escherichia coli strains isolated from chicken meat available in the local shops of Rafha, Saudi Arabia. Place and Duration of Study: Department of basic health sciences, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia, between February and October, 2019 Methodology: Eighty-six E. coli strains, isolated from chicken meat, were tested for their antibiotic resistance profile, using the disc diffusion method.    Results: All the isolated E. coli strains were tested against 14 antibiotics. The maximum resistance was found against penicillin G (95%) followed by amoxicillin (85%), Cephalothin (81%), Erythromycin (72%), and Tetracycline (50%). Imipenem was the most effective agent of all with only 1% resistance followed by Cefepime with almost 6% resistance. A high percentage of the isolates (57%,) were multidrug resistant as they were non—susceptible to at least one antimicrobial in ≥3 antimicrobial classes including amoxicillin, erythromycin and tetracycline. Conclusion: The prevalence of MDR E. coli in retail chicken meat is very high and could pose a serious threat to public health.


Sign in / Sign up

Export Citation Format

Share Document