Understanding gut microbiomes as targets for improving pig gut health

2022 ◽  
Author(s):  
Keyword(s):  
2020 ◽  
Vol 21 (3) ◽  
pp. 74-79
Author(s):  
Ahmed Elbaz ◽  
Said El-sheikh

Objective: To investigate the effect of antibiotics and/or probiotics on broiler performance, some serum metabolites, cecum microflora composition, and ileum histomorphology under the Egyptian conditions. Design: Randomized controlled experimental study. Animals: Two hundred forty 1-day-old Ross (308) chicks were reared till 35 days of age. Procedures: The birds were randomly allocated into four main groups: a control diet without additives (CON); probiotic (Lactobacillus acidophilus) supplemented diet (PRO); antibiotic (Avilamycin) supplemented diet (ANT) and a mix group (AP) that received antibiotic in the diet form 1 to 4 days of age and treated during the rest of the experimental period with probiotics. Results: Chickens fed on probiotic or antibiotic diets had linear improvement in live body weight (LBW) and feed conversion ratio (FCR) compared with the control group, while the best LBW and FCR were in the AP group. An improvement in the nutrient digestibility was observed in the probiotic added groups (PRO and AP). Serum cholesterol and low-density lipoprotein cholesterol contents decreased when antimicrobial (probiotic or antibiotic) supplementations were used, while there was an increase in high-density lipoprotein cholesterol contents, serum total protein, and albumin levels. Among all groups, cecum Clostridium perfringens and Escherichia coli counts decreased; however, there was an increase in Lactobacillus count compared to the control group. In probiotic supplemented groups (PRO and AP), a significant (P<0.05) improvement in ilea architecture. Conclusion and clinical relevance: Using probiotic after initial treatment with an antibiotic in broiler diets had a positive effect on broiler growth performance, gut health (improved cecum microbial populations and ileum histomorphology), and nutrient digestibility.


2020 ◽  
pp. 488-494
Author(s):  
Giovanna M. Aita ◽  
Young Hwan Moon

Xylooligosaccharides (XOS) is a group of emerging prebiotics that selectively stimulate the growth of advantageous gastrointestinal bacteria benefitting the host’s gut health and functionality. XOS can achieve positive biological effects at low daily doses and low caloric content, properties that are the same or more desirable than the already established prebiotics. XOS are present in plants in very low amounts so there is a great opportunity to isolate XOS with varying degrees of polymerization from the hemicellulose (xylan) fraction of lignocellulosic materials (e.g., bagasse), a source that offers both economic and environmental advantages. In this study, the recovery of XOS by the combined use of activated carbon adsorption, water washing and ethanol desorption from diluted acid pretreated energy cane bagasse hydrolysates was evaluated. The recovered XOS was tested for its prebiotic activity on Bifidobacterium adolescentis ATCC 15703. The final product of extracted XOS from energy cane bagasse (XOS EC Bagasse crude sample) had a purity of 93%, which was comparable to the purities observed with two commercially available XOS prebiotics, CPA (89%) and CPB (93%). XOS EC Bagasse crude sample exhibited prebiotic properties by stimulating the growth of B. adolescentis ATCC 15703 and by producing lactic acid, which were comparable to those observed with the commercial prebiotics.


2020 ◽  
Author(s):  
Lynda Grine ◽  
Niels Hilhorst ◽  
Nathalie Michels ◽  
Souheila Abbedou ◽  
Stefaan De Henauw ◽  
...  

BACKGROUND Psoriasis is a complex disease associated with multiple comorbidities, including metabolic syndrome and leaky gut syndrome. Dietary lifestyle interventions have been reported to affect the disease in terms of lesional severity. It remains unclear how diets affect these comorbidities and the general health in psoriasis patients. Modified Intermittent Fasting (MIF) on 2 non-consecutive days has shown beneficial effects on metabolic parameters. A significant advantage of MIF over the currently investigated dietary changes is its feasibility. OBJECTIVE Here, we aim to study the effects of MIF on skin, gut and metabolic health in psoriasis patients. METHODS A two-arm pilot prospective cross-over randomized control trial (RCT) will be performed in 20 patients with psoriasis as a pilot study. Patients will be randomized 1:1 to either start with MIF and subsequent regular diet for 12 weeks each or to start with regular diet and subsequent MIF for 12 weeks each. The following parameters will be assessed: demographics, disease phenotype, medical and familial history, psoriasis severity, dermatology-specific and general quality of life, nutritional and physical habits, mental and intestinal health, intestinal and cutaneous integrity, inflammatory and metabolic markers, and satisfaction. RESULTS The aim is to uncover the effects of MIF on psoriasis severity and gut health integrity through clinical and molecular investigation. More precisely, we want to map the evolution of the different markers in response to MIF as compared to the regular diet, such as psoriasis severity, permeability and inflammation. CONCLUSIONS Understanding how dietary lifestyles can affect epithelial lineages such as the skin and gut, will greatly improve our understanding on the development of psoriasis and may pose a non-pharmacological venue for treatments. CLINICALTRIAL ClinicalTrials.gov, NCT04418791. Registered June 5 2020, https://clinicaltrials.gov/ct2/show/NCT04418791. Current protocol date/version: May 20 2020


Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Marthinus Janse van Vuuren ◽  
Theodore Albertus Nell ◽  
Jonathan Ambrose Carr ◽  
Douglas B. Kell ◽  
Etheresia Pretorius

Neuronal lesions in Parkinson’s disease (PD) are commonly associated with α-synuclein (α-Syn)-induced cell damage that are present both in the central and peripheral nervous systems of patients, with the enteric nervous system also being especially vulnerable. Here, we bring together evidence that the development and presence of PD depends on specific sets of interlinking factors that include neuroinflammation, systemic inflammation, α-Syn-induced cell damage, vascular dysfunction, iron dysregulation, and gut and periodontal dysbiosis. We argue that there is significant evidence that bacterial inflammagens fuel this systemic inflammation, and might be central to the development of PD. We also discuss the processes whereby bacterial inflammagens may be involved in causing nucleation of proteins, including of α-Syn. Lastly, we review evidence that iron chelation, pre-and probiotics, as well as antibiotics and faecal transplant treatment might be valuable treatments in PD. A most important consideration, however, is that these therapeutic options need to be validated and tested in randomized controlled clinical trials. However, targeting underlying mechanisms of PD, including gut dysbiosis and iron toxicity, have potentially opened up possibilities of a wide variety of novel treatments, which may relieve the characteristic motor and nonmotor deficits of PD, and may even slow the progression and/or accompanying gut-related conditions of the disease.


Sign in / Sign up

Export Citation Format

Share Document