Advances in biostimulants as an integrated pest management tool in horticulture

2022 ◽  
Author(s):  
Surendra K. Dara ◽  

This chapter covers the definition of biostimulants, brief summary of various categories, and how they are used for promoting plant growth, building soil structure, imparting stress tolerance, and contribute to pest and disease suppression. Strategies for using biostimulants as a part of IPM and some challenges and future opportunities were also discussed.

2008 ◽  
Vol 48 (12) ◽  
pp. 1574 ◽  
Author(s):  
H. B. Brier ◽  
D. A. H. Murray ◽  
L. J. Wilson ◽  
A. H. Nicholas ◽  
M. M. Miles ◽  
...  

The authors overview integrated pest management (IPM) in grain crops in north-eastern Australia, which is defined as the area north of latitude 32°S. Major grain crops in this region include the coarse grains (winter and summer cereals), oilseeds and pulses. IPM in these systems is complicated by the diversity of crops, pests, market requirements and cropping environments. In general, the pulse crops are at greatest risk, followed by oilseeds and then by cereal grains. Insecticides remain a key grain pest management tool in north-eastern Australia. IPM in grain crops has benefited considerably through the increased adoption of new, more selective insecticides and biopesticides for many caterpillar pests, in particular Helicoverpa spp. and loopers, and the identification of pest–crop scenarios where spraying is unnecessary (e.g. for most Creontiades spp. populations in soybeans). This has favoured the conservation of natural enemies in north-eastern Australia grain crops, and has arguably assisted in the management of silverleaf whitefly in soybeans in coastal Queensland. However, control of sucking pests and podborers such as Maruca vitrata remains a major challenge for IPM in summer pulses. Because these crops have very low pest-damage tolerances and thresholds, intervention with disruptive insecticides is frequently required, particularly during podfill. The threat posed by silverleaf whitefly demands ongoing multi-pest IPM research, development and extension as this pest can flare under favourable seasonal conditions, especially where disruptive insecticides are used injudiciously. The strong links between researchers and industry have facilitated the adoption of IPM practices in north-eastern Australia and augers well for future pest challenges and for the development and promotion of new and improved IPM tactics.


Weed Science ◽  
1982 ◽  
Vol 30 (S1) ◽  
pp. 46-47
Author(s):  
Donald Penner

Integrated Pest Management (IPM) has been defined as an interdisciplinary science (3). IPM has become popular this past decade; however, integrated pest management has been practiced by farmers and growers for decades. As nonfarming agricultural professionals become more specialized they tend to become “reductionists” or ever-narrower in their perspective base. From this evolution into disciplines has arisen the necessity to redirect thought and effort to addressing the total or whole such as is commonly done by the farmer or grower. IPM has been considered an effort in this direction, although unanimity in definition of IPM has been notably absent. Some have considered it synonymous with integrated pest control; in contrast, others have viewed it as a means to reduce the use of pesticides. Nevertheless, IPM has received considerable attention in the pest-related disciplines. Its implementation has been addressed in Presidential messages to Congress in 1977 and 1979 (7, 8).


EDIS ◽  
2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Philip Harmon ◽  
Oscar Liburd ◽  
Peter Dittmar ◽  
Jeffrey Williamson ◽  
Doug Phillips

This 32-page publication is a blueberry integrated pest management guide for the commercial production of blueberries in Florida, including information on plant disease, insect and mite pests, weed control, hydrogen cyanamide, and plant growth regulators. Major revision for 2022 by Philip F. Harmon, Oscar E. Liburd, Peter Dittmar, Jeffrey G. Williamson, and Doug Phillips; published by the UF/IFAS Horticultural Sciences Department.https://edis.ifas.ufl.edu/hs380


2013 ◽  
Author(s):  
David E. Crowley ◽  
Dror Minz ◽  
Yitzhak Hadar

PGPR bacteria include taxonomically diverse bacterial species that function for improving plant mineral nutrition, stress tolerance, and disease suppression. A number of PGPR are being developed and commercialized as soil and seed inoculants, but to date, their interactions with resident bacterial populations are still poorly understood, and-almost nothing is known about the effects of soil management practices on their population size and activities. To this end, the original objectives of this research project were:  1) To examine microbial community interactions with plant-growth-promoting rhizobacteria (PGPR) and their plant hosts.  2) To explore the factors that affect PGPR population size and activity on plant root surfaces.  In our original proposal, we initially prqposed the use oflow-resolution methods mainly involving the use of PCR-DGGE and PLFA profiles of community structure. However, early in the project we recognized that the methods for studying soil microbial communities were undergoing an exponential leap forward to much more high resolution methods using high-throughput sequencing. The application of these methods for studies on rhizosphere ecology thus became a central theme in these research project. Other related research by the US team focused on identifying PGPR bacterial strains and examining their effective population si~es that are required to enhance plant growth and on developing a simulation model that examines the process of root colonization.  As summarized in the following report, we characterized the rhizosphere microbiome of four host plant species to determine the impact of the host (host signature effect) on resident versus active communities. Results of our studies showed a distinct plant host specific signature among wheat, maize, tomato and cucumber, based on the following three parameters: (I) each plant promoted the activity of a unique suite of soil bacterial populations; (2) significant variations were observed in the number and the degree of dominance of active populations; and (3)the level of contribution of active (rRNA-based) populations to the resident (DNA-based) community profiles. In the rhizoplane of all four plants a significant reduction of diversity was observed, relative to the bulk soil. Moreover, an increase in DNA-RNA correspondence indicated higher representation of active bacterial populations in the residing rhizoplane community. This research demonstrates that the host plant determines the bacterial community composition in its immediate vicinity, especially with respect to the active populations. Based on the studies from the US team, we suggest that the effective population size PGPR should be maintained at approximately 105 cells per gram of rhizosphere soil in the zone of elongation to obtain plant growth promotion effects, but emphasize that it is critical to also consider differences in the activity based on DNA-RNA correspondence.  The results ofthis research provide fundamental new insight into the composition ofthe bacterial communities associated with plant roots, and the factors that affect their abundance and activity on root surfaces. Virtually all PGPR are multifunctional and may be expected to have diverse levels of activity with respect to production of plant growth hormones (regulation of root growth and architecture), suppression of stress ethylene (increased tolerance to drought and salinity), production of siderophores and antibiotics (disease suppression), and solubilization of phosphorus. The application of transcriptome methods pioneered in our research will ultimately lead to better understanding of how management practices such as use of compost and soil inoculants can be used to improve plant yields, stress tolerance, and disease resistance. As we look to the future, the use of metagenomic techniques combined with quantitative methods including microarrays, and quantitative peR methods that target specific genes should allow us to better classify, monitor, and manage the plant rhizosphere to improve crop yields in agricultural ecosystems.   In addition, expression of several genes in rhizospheres of both cucumber and whet roots were identified, including mostly housekeeping genes. Denitrification, chemotaxis and motility genes were preferentially expressed in wheat while in cucumber roots bacterial genes involved in catalase, a large set of polysaccharide degradation and assimilatory sulfate reduction genes were preferentially expressed.


Author(s):  
J. R. Adams ◽  
G. J Tompkins ◽  
A. M. Heimpel ◽  
E. Dougherty

As part of a continual search for potential pathogens of insects for use in biological control or on an integrated pest management program, two bacilliform virus-like particles (VLP) of similar morphology have been found in the Mexican bean beetle Epilachna varivestis Mulsant and the house cricket, Acheta domesticus (L. ).Tissues of diseased larvae and adults of E. varivestis and all developmental stages of A. domesticus were fixed according to procedures previously described. While the bean beetles displayed no external symptoms, the diseased crickets displayed a twitching and shaking of the metathoracic legs and a lowered rate of activity.Examinations of larvae and adult Mexican bean beetles collected in the field in 1976 and 1977 in Maryland and field collected specimens brought into the lab in the fall and reared through several generations revealed that specimens from each collection contained vesicles in the cytoplasm of the midgut filled with hundreds of these VLP's which were enveloped and measured approximately 16-25 nm x 55-110 nm, the shorter VLP's generally having the greater width (Fig. 1).


2019 ◽  
Vol 30 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Elizabeth H. Beers ◽  
Adrian Marshall ◽  
Jim Hepler ◽  
Josh Milnes

Sign in / Sign up

Export Citation Format

Share Document