scholarly journals Turbine-generator system with a load state observer

2021 ◽  
Vol 2021 (4) ◽  
pp. 75-86
Author(s):  
Nikolay V. GRACHEV ◽  

Objective: To generate a mathematical model of a gas turbine engine state observer for a GT1h series gas turbine locomotive. Methods: Calculations and modeling of processes were performed using software packages for mathematical modeling of complex electromechanical systems with implementation in Matlab, while data processing and graph plotting were performed using Microsoft Excel. Results: It has been shown that the use of the mathematical model of the state observer in the automatic control system allows providing conditions for the formation of an optimal power load trajectory of the Gas Turbine Engine — Traction Generator system when regulating the power, taking into account the limitations associated with the physical processes occurring in the gas turbine engine. Practical importance: The use of the mathematical model of the state observer makes it possible to generate rational gas turbine load trajectories in the entire range of its use.

2021 ◽  
Author(s):  
Oleg Baturin ◽  
Grigorii Popov ◽  
Paúl Nicolalde ◽  
Anastasia Korneeva

Abstract The article describes the method developed by the authors and tested on the example of the AI-25 engine. The study was focused on determining the probability distribution of the output parameters of a gas turbine engine mathematical model. The distribution was obtained considering the uncertainty of the initial data. The paper describes the identified problems and possible ways to solve them. In particular, it was found that it is not possible to study the influence of more than 7..8 input parameters on the probability distribution of output parameters with the current level of development of computer technology even using simple mathematical models. For this reason, a method has been developed to obtain reliable results while reducing the number of considered input data based on sensitivity analysis. The paper also proposed a way of comparing stochastic experimental and computational data with each other using a bivariate distribution. This method allows a precise characterisation of the calculation error using 4 numerical values. The experience obtained in the work has shown that taking into account the uncertainty of the initial data dramatically changes the process of interpreting the results. It should be noted that the obtained results are universal and can be used with other mathematical models in various industries although they were developed on the example of the mathematical model of a gas turbine engine.


1992 ◽  
Vol 114 (4) ◽  
pp. 763-767 ◽  
Author(s):  
J. W. Watts ◽  
T. E. Dwan ◽  
C. G. Brockus

An analog fuel control for a gas turbine engine was compared with several state-space derived fuel controls. A single-spool, simple cycle gas turbine engine was modeled using ACSL (high level simulation language based on FORTRAN). The model included an analog fuel control representative of existing commercial fuel controls. The ACSL model was stripped of nonessential states to produce an eight-state linear state-space model of the engine. The A, B, and C matrices, derived from rated operating conditions, were used to obtain feedback control gains by the following methods: (1) state feedback; (2) LQR theory; (3) Bellman method; and (4) polygonal search. An off-load transient followed by an on-load transient was run for each of these fuel controls. The transient curves obtained were used to compare the state-space fuel controls with the analog fuel control. The state-space fuel controls did better than the analog control.


2021 ◽  
Vol 28 (3) ◽  
pp. 171-185
Author(s):  
Oleg Baturin ◽  
Paul Nikolalde ◽  
Grigorii Popov ◽  
Anastssia Korneeva ◽  
Ivan Kudryashov

Author(s):  
Sudheendra K N ◽  
Kumar Sakinala ◽  
Davendar Kashireddy ◽  
Somashekhar Hosamane ◽  
Vadiraja Upadya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document