scholarly journals PEDAGOGY OF PLAY: THE CASE OF PUPPETRY IN INTERMEDIATE PHASE MATHEMATICS

Author(s):  
Erika Potgieter ◽  
Marthie Van Der Walt
Keyword(s):  
Author(s):  
Elena Dellepiane ◽  
Francesco Pera ◽  
Paola Zunino ◽  
Maria Grazia Mugno ◽  
Paolo Pesce ◽  
...  

The aim of this study was to assess oral health related quality of life (OHRQoL) of patients before, during and after completion of implant-supported full-arch immediate loading rehabilitation according to the Columbus Bridge Protocol (CBP). 25 patients with compromised dentition were rehabilitated according to the CBP and were assessed for OHRQoL using 4 questionnaires specifically realized for this study and inspired to the OHIP (Oral Health Impact Profile) questionnaire. Patients assessed themselves before surgery, during the healing period (1 week and 2 months after surgery) and after definitive prosthodontic treatment (4 months after surgery). The questionnaires specifically investigated patients’ pain, confort, home oral hygiene habits, satisfaction related to esthetics, masticatory ability, phonetics and general satisfaction toward the treatment.Patients reported an improvement of OHRQoL after full-arch immediate loading rehabilitation. A statistically significant improvement in aesthetic and chewing ability was found. After 4 months 92% of the patients did not feel tense with their smile, 96% did not show problems to relate with other people or smiling, 92% did not show difficulty to eat some foods. Phonetics was found to be a critical issue, especially in the intermediate phase of healing. One week after surgery the percentage of patients who was very satisfied with phonetics slightly decreased from 48% to 36%. The assessment of patients' OHRQoL related to full-arch immediate loading implant therapy exhibited a significant improvement of their quality of life. The questionnaires herein presented could be an effective tool to evaluate patients' reaction to oral rehabilitation.


2020 ◽  
Vol 5 (8(77)) ◽  
pp. 65-68
Author(s):  
Teymur Mammad Ilyasly ◽  
Rahman Hasanaga Fatullazade ◽  
Zakir Islam Ismailov ◽  
Nigar Nadir Jafarova

The synthesis of alloys of the system was carried out stepwise in rotary furnaces. The synthesis mode was selected based on the physicochemical properties of the elementary components. For homogenization, the alloys were subjected to isothermal annealing at 750 and 1275 K, depending on the Tm2Te3 concentration, for 250 h after homogenization of the alloys, they were subjected to physicochemical analysis. The results of differential thermal analysis showed that reversible thermal effects are observed in the alloys of the system. In alloys in a 1: 1 ratio, a new intermediate phase is formed with a composition corresponding to the TmAsTe3 compound. The homogeneity area is observed in the concentration range 52.5-47.5. It was found that in the concentration range 98.5-52.5 Tm2Te3 there are two phases - a mixture of β and of the solid solution, and in the concentration range of 47.51 mol% Tm2Te3 phases and α are in equilibrium. ) 66 The eutectic has coordinates of 11.5 mol Tm2Te3 at a temperature of 575 K.


1992 ◽  
Vol 26 (7-8) ◽  
pp. 1537-1543 ◽  
Author(s):  
W. H. Bruvold

Models recommended for public involvement in environmental planning call for: 1) early and full involvement with technical planners from the start, 2) involvement at an intermediate phase once technical planners have developed a short list of the most feasible alternatives, and 3) later involvement only by ratification of the one alternative selected and developed by technical planners. The present study reports results assessing public involvement in planning at the intermediate phase using results from three general population surveys of the greater San Diego area done in 1989, 1990, and 1991 which dealt with municipal water reuse alternatives. Feasibility of the intermediate approach was demonstrated by correspondence between survey and technical planning evaluations and by consistency between and within survey findings.


2021 ◽  
Vol 13 (12) ◽  
pp. 6536
Author(s):  
Yanrong Zhao ◽  
Pengliang Sun ◽  
Ping Chen ◽  
Xiaomin Guan ◽  
Yuanhao Wang ◽  
...  

In this paper, a new method of basic oxygen furnace (BOF) slag component modification with a regulator was studied. The main mineral was designed as C4AF, C2S and C3S in modified BOF slag, and the batching method, mineral compositions, hydration rate, activation index and capability of resisting sulfate corrode also were studied. XRD, BEI and EDS were used to characterize the mineral formation, and SEM was used to study the morphology of hydration products. The results show that most inert phase in BOF slag can be converted into active minerals of C4AF and C2S through reasonable batching calculation and the amount of regulating agent. The formation of C4AF and C2S in modified BOF slag is better, and a small amount of MgO is embedded in the white intermediate phase, but C3S is not detected. With the increase in the CaO/SiO2 ratio in raw materials, the CaO/SiO2 ratio of calcium silicate minerals in modified BOF slag increases, the contents of f-CaO are less than 1.0%, and the activity index improves. Compared with the BOF slag, the activity index and exothermic rate of modified BOF slag improved obviously, and the activity index of 90 days is close to 100%. With the increase in modified BOF slag B cement, the flexural strength decrease; however, the capability of resisting sulfate corrode is improved due to the constant formation of a short rod-like shape ettringite in Na2SO4 solution and the improvement of the structure densification of the hydration products.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1916
Author(s):  
Myriam Canonico ◽  
Grzegorz Konert ◽  
Aurélie Crepin ◽  
Barbora Šedivá ◽  
Radek Kaňa

Light plays an essential role in photosynthesis; however, its excess can cause damage to cellular components. Photosynthetic organisms thus developed a set of photoprotective mechanisms (e.g., non-photochemical quenching, photoinhibition) that can be studied by a classic biochemical and biophysical methods in cell suspension. Here, we combined these bulk methods with single-cell identification of microdomains in thylakoid membrane during high-light (HL) stress. We used Synechocystis sp. PCC 6803 cells with YFP tagged photosystem I. The single-cell data pointed to a three-phase response of cells to acute HL stress. We defined: (1) fast response phase (0–30 min), (2) intermediate phase (30–120 min), and (3) slow acclimation phase (120–360 min). During the first phase, cyanobacterial cells activated photoprotective mechanisms such as photoinhibition and non-photochemical quenching. Later on (during the second phase), we temporarily observed functional decoupling of phycobilisomes and sustained monomerization of photosystem II dimer. Simultaneously, cells also initiated accumulation of carotenoids, especially ɣ–carotene, the main precursor of all carotenoids. In the last phase, in addition to ɣ-carotene, we also observed accumulation of myxoxanthophyll and more even spatial distribution of photosystems and phycobilisomes between microdomains. We suggest that the overall carotenoid increase during HL stress could be involved either in the direct photoprotection (e.g., in ROS scavenging) and/or could play an additional role in maintaining optimal distribution of photosystems in thylakoid membrane to attain efficient photoprotection.


2021 ◽  
Vol 49 (5) ◽  
pp. 030006052110106
Author(s):  
Hoda Salah Darwish ◽  
Mohamed Yasser Habash ◽  
Waleed Yasser Habash

Objective To analyze computed tomography (CT) features of symptomatic patients with coronavirus disease 2019 (COVID-19). Methods Ninety-five symptomatic patients with COVID-19 confirmed by reverse-transcription polymerase chain reaction from 1 May to 14 July 2020 were retrospectively enrolled. Follow-up CT findings and their distributions were analyzed and compared from symptom onset to late-stage disease. Results Among all patients, 15.8% had unilateral lung disease and 84.2% had bilateral disease with slight right lower lobe predilection (47.4%). Regarding lesion density, 49.4% of patients had pure ground glass opacity (GGO) and 50.5% had GGO with consolidation. Typical early-stage patterns were bilateral lesions in 73.6% of patients, diffuse lesions (41.0%), and GGO (65.2%). Pleural effusion occurred in 13.6% and mediastinal lymphadenopathy in 11.5%. During intermediate-stage disease, 47.4% of patients showed GGO as the disease progressed; however, consolidation was the predominant finding (52.6%). Conclusion COVID-19 pneumonia manifested on lung CT scans with bilateral, peripheral, and right lower lobe predominance and was characterized by diffuse bilateral GGO progressing to or coexisting with consolidation within 1 to 3 weeks. The most frequent CT lesion in the early, intermediate, and late phases was GGO. Consolidation appeared in the intermediate phase and gradually increased, ending with reticular and lung fibrosis-like patterns.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 647 ◽  
Author(s):  
Bingrong Zhang ◽  
Lingkun Zhang ◽  
Zhiming Wang ◽  
Anjiang Gao

In order to obtain high-strength and high-ductility Al–Si–Cu–Mg alloys, the present research is focused on optimizing the composition of soluble phases, the structure and morphology of insoluble phases, and artificial ageing processes. The results show that the best matches, 0.4 wt% Mg and 1.2 wt% Cu in the Al–9Si alloy, avoided the toxic effect of the blocky Al2Cu on the mechanical properties of the alloy. The addition of 0.6 wt% Zn modified the morphology of eutectic Si from coarse particles to fine fibrous particles and the texture of Fe-rich phases from acicular β-Fe to blocky π-Fe in the Al–9Si–1.2Cu–0.4Mg-based alloy. With the optimization of the heat treatment parameters, the spherical eutectic Si and the fully fused β-Fe dramatically improved the ultimate tensile strength and elongation to fracture. Compared with the Al–9Si–1.2Cu–0.4Mg-based alloy, the 0.6 wt% Zn modified alloy not only increased the ultimate tensile strength and elongation to fracture of peak ageing but also reduced the time of peak ageing. The following improved combination of higher tensile strength and higher elongation was achieved for 0.6 wt% Zn modified alloy by double-stage ageing: 100 °C × 3 h + 180 °C × 7 h, with mechanical properties of ultimate tensile strength (UTS) of ~371 MPa, yield strength (YS) of ~291 MPa, and elongation to fracture (E%) of ~5.6%.


Sign in / Sign up

Export Citation Format

Share Document