scholarly journals THERMAL STATE OF THE AIR - GROUND HEAT EXCHANGER PREDICTION BASED ON ARTIFICIAL NEURAL NETWORK

Author(s):  
B.I. Basok ◽  
M.P Novitska ◽  
O.M. Nedbailo ◽  
M.V Tkachenko ◽  
I.K. Bozhko

The work aim is to predict the thermal state of the air-ground heat exchanger based on an artificial neural network. Training, testing and validation of the proposed model were made on experimental data obtained in the thermophysical laboratory of the Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine. A simple neural network is used in this work. The air temperature at the inlet to the heat exchanger, and its relative humidity are selected as input parameters for the neural network. The MATLAB (R2016a) and Levenberg-Markwatt model were used in this article's calculations. One hidden layer and 10 neurons were presented in the model. The array of analysed data was divided into ratios of 70%, 15%, 15% for neural network training, validation and testing, respectively. As a result, it is obtained that the forecasting takes place with acceptable accuracy in all models. The root mean square error for the whole data set for different models varies from 0.105 to 2.323°С. The maximum mean absolute percentage error was the largest for CFD model and was 11.2%. The minimum mean bias error of the predicted data from the experimentally measured ones was found in the model using temperature, humidity, and air temperature at the outlet of the air-ground heat exchanger for the previous hour and was 0.02%. The training and testing of the proposed models based on an artificial neural network are satisfactory enough to predict the temperature taking into account the influence of weather conditions. Artificial neural networks can be used to predict the thermal state of the air-ground heat exchanger. Data representing the description of a real system are required for forecasting the parameters based on the ANN.

Sign in / Sign up

Export Citation Format

Share Document