scholarly journals Intercomparison of MODIS and VIIRS Fire Products in Khanty-Mansiysk Russia: Implication for Characterizing Gas Flaring from Space

Author(s):  
Ambrish Sharma ◽  
Jun Wang

Gas flaring is commonly used by industrial plants for processing oil and natural gases in the atmosphere, and hence is an important anthropogenic source for various pollutants including CO2, CO, and aerosols. This study evaluates the feasibility of using satellite data to characterize gas flaring form space by focusing on the Khanty Mansiysk Autonomous Okrug in Russia, a region that is well known for its dominatingly gas flaring activities. Multiple satellite-based thermal anomaly data products at night are inter-compared and analyzed, including MODIS (Moderate Resolution Imaging Spectroradiometer) Terra level-2 Thermal Anomalies product (MOD14), MODIS Aqua level-2 Thermal Anomalies product (MYD14), VIIRS (Visible Infrared Imaging Radiometer Suite) Active Fires Applications Related Product (VAFP), and VIIRS level-2 data based Nightfire product (VNF). The analysis compares and contrasts the efficacy of these sensor products in detecting small, hot sources like flares on the ground in extremely cold environments such as Russia. We found that the VNF algorithm recently launched by NOAA has the unprecedented accuracy and efficiency in characterizing gas flares in the region owing primarily to the use of Shortwave Infrared (SWIR) bands. Reconciliation of VNF’s differences and similarities with other nighttime fire products is also conducted, indicating that MOD14/MYD14 and VAFP data are only effective in detecting those gas flaring pixels that are among the hottest in the region. Validation of VNF product of gas flaring location with Google Earth images are made. It is shown that that VNF’s estimates of gas flaring area (the area of gas flaming) agree well the counterparts from Google images with a linear correlation of 0.91, highlighting its potential use for routinely monitoring emissions of gas flaring from space.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1538
Author(s):  
Giuseppe Mazzeo ◽  
Micheal S. Ramsey ◽  
Francesco Marchese ◽  
Nicola Genzano ◽  
Nicola Pergola

The Normalized Hotspot Indices (NHI) tool is a Google Earth Engine (GEE)-App developed to investigate and map worldwide volcanic thermal anomalies in daylight conditions, using shortwave infrared (SWIR) and near infrared (NIR) data from the Multispectral Instrument (MSI) and the Operational Land Imager (OLI), respectively, onboard the Sentinel 2 and Landsat 8 satellites. The NHI tool offers the possibility of ingesting data from other sensors. In this direction, we tested the NHI algorithm for the first time on Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. In this study, we show the results of this preliminary implementation, achieved investigating the Kilauea (Hawaii, USA), Klyuchevskoy (Kamchatka; Russia), Shishaldin (Alaska; USA), and Telica (Nicaragua) thermal activities of March 2000–2008. We assessed the NHI detections through comparison with the ASTER Volcano Archive (AVA), the manual inspection of satellite imagery, and the information from volcanological reports. Results show that NHI integrated the AVA observations, with a percentage of unique thermal anomaly detections ranging between 8.8% (at Kilauea) and 100% (at Shishaldin). These results demonstrate the successful NHI exportability to ASTER data acquired before the failure of SWIR subsystem. The full ingestion of the ASTER data collection, available in GEE, within the NHI tool allows us to develop a suite of multi-platform satellite observations, including thermal anomaly products from Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+), which could support the investigation of active volcanoes from space, complementing information from other systems.


2018 ◽  
Vol 10 (9) ◽  
pp. 1379 ◽  
Author(s):  
Simon Plank ◽  
Michael Nolde ◽  
Rudolf Richter ◽  
Christian Fischer ◽  
Sandro Martinis ◽  
...  

Villarrica Volcano is one of the most active volcanoes in the South Andes Volcanic Zone. This article presents the results of a monitoring of the time before and after the 3 March 2015 eruption by analyzing nine satellite images acquired by the Technology Experiment Carrier-1 (TET-1), a small experimental German Aerospace Center (DLR) satellite. An atmospheric correction of the TET-1 data is presented, based on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GDEM) and Moderate Resolution Imaging Spectroradiometer (MODIS) water vapor data with the shortest temporal baseline to the TET-1 acquisitions. Next, the temperature, area coverage, and radiant power of the detected thermal hotspots were derived at subpixel level and compared with observations derived from MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) data. Thermal anomalies were detected nine days before the eruption. After the decrease of the radiant power following the 3 March 2015 eruption, a stronger increase of the radiant power was observed on 25 April 2015. In addition, we show that the eruption-related ash coverage of the glacier at Villarrica Volcano could clearly be detected in TET-1 imagery. Landsat-8 imagery was analyzed for comparison. The information extracted from the TET-1 thermal data is thought be used in future to support and complement ground-based observations of active volcanoes.


2013 ◽  
Vol 30 (12) ◽  
pp. 2720-2736 ◽  
Author(s):  
Sirish Uprety ◽  
Changyong Cao ◽  
Xiaoxiong Xiong ◽  
Slawomir Blonski ◽  
Aisheng Wu ◽  
...  

Abstract On-orbit radiometric performance of the Suomi National Polar-Orbiting Partnership (Suomi-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) is studied using the extended simultaneous nadir overpass (SNO-x) approach. Unlike the traditional SNO analysis of data in the high latitudes, this study extends the analysis to the low latitudes—in particular, over desert and ocean sites with relatively stable and homogeneous radiometric properties—for intersatellite comparisons. This approach utilizes a pixel-by-pixel match with an efficient geospatial matching algorithm to map VIIRS data into the Moderate Resolution Imaging Spectroradiometer (MODIS). VIIRS moderate-resolution bands M-1 through M-8 are compared with Aqua MODIS equivalent bands to quantify radiometric bias over the North African desert and over the ocean. Biases exist between VIIRS and MODIS in several bands, primarily because of spectral differences as well as possible calibration uncertainties, residual cloud contamination, and bidirectional reflectance distribution function (BRDF). The impact of spectral differences on bias is quantified by using the Moderate Resolution Atmospheric Transmission (MODTRAN) and hyperspectral measurements from the Earth Observing-1 (EO-1) Hyperion and the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS). After accounting for spectral differences and bias uncertainties, the VIIRS radiometric bias over desert agrees with MODIS measurements within 2% except for the VIIRS shortwave infrared (SWIR) band M-8, which indicates a nearly 3% bias. Over ocean, VIIRS agrees with MODIS within 2% by the end of January 2013 with uncertainty less than 1%. Furthermore, VIIRS bias relative to MODIS is also computed at the Antarctica Dome C site for validation and the result agrees well within 1% with the bias estimated using SNO-x over desert.


2020 ◽  
Vol 12 (5) ◽  
pp. 819 ◽  
Author(s):  
Mariapia Faruolo ◽  
Teodosio Lacava ◽  
Nicola Pergola ◽  
Valerio Tramutoli

The RST (Robust Satellite Techniques)-FLARE algorithm is a satellite-based method using a multitemporal statistical analysis of nighttime infrared signals strictly related to industrial hotspots, such as gas flares. The algorithm was designed for both identifying and characterizing gas flares in terms of radiant/emissive power. The Val d’Agri Oil Center (COVA) is a gas and oil pre-treatment plant operating for about two decades within an anthropized area of Basilicata region (southern Italy) where it represents a significant potential source of social and environmental impacts. RST-FLARE, developed to study and monitor the gas flaring activity of this site by means of MODIS (Moderate Resolution Imaging Spectroradiometer) data, has exported VIIRS (Visible Infrared Imaging Radiometer Suite) records by exploiting the improved spatial and spectral properties offered by this sensor. In this paper, the VIIRS-based configuration of RST-FLARE is presented and its application on the recent (2015-2019) gas flaring activity at COVA is analyzed and discussed. Its performance in gas flaring characterization is in good agreement with VIIRS Nightfire outputs to which RST-FLARE seems to provide some add-ons. The great consistency of radiant heat estimates computed with both RST-FLARE developed configurations allows proposing a multi-sensor RST-FLARE strategy for a more accurate multi-year analysis of gas flaring.


2020 ◽  
Vol 12 (2) ◽  
pp. 238 ◽  
Author(s):  
Sanath Sathyachandran Kumar ◽  
John Hult ◽  
Joshua Picotte ◽  
Birgit Peterson

Fire Radiative Power (FRP) is related to fire combustion rates and is used to quantify the atmospheric emissions of greenhouse gases and aerosols. FRP over gas flares and wildfires can be retrieved remotely using satellites that observe in shortwave infrared (SWIR) to middle infrared (MIR) wavelengths. Heritage techniques to retrieve FRP developed for wildland fires using the MIR 4 μm radiances have been adapted for the hotter burning gas flares using the SWIR 2 μm observations. Effects of atmosphere, including smoke and aerosols, are assumed to be minimal in these algorithms because of the use of longer than visual wavelengths. Here we use Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS) and Landsat 8 observations acquired before and during emergency oil and gas flaring in eastern Saudi Arabia to show that dark, sooty smoke affects both 4 μm and 2 μm observations. While the 2 μm observations used to retrieve gas FRP may be reliable during clear atmospheric conditions, performance is severely impacted by dark smoke. Global remote sensing-based inventories of wildfire and gas flaring need to consider the possibility that soot and dark smoke can potentially lead to an underestimation of FRP over fires.


2018 ◽  
Vol 10 (8) ◽  
pp. 1177 ◽  
Author(s):  
Teodosio Lacava ◽  
Matthieu Kervyn ◽  
Mariangela Liuzzi ◽  
Francesco Marchese ◽  
Nicola Pergola ◽  
...  

The identification of subtle thermal anomalies (i.e., of low-temperature and/or spatial extent) at volcanoes by satellite is of great interest for scientists, especially because minor changes in surface temperature might reveal an unrest phase or impending activity. A good test case for assessing the sensitivity level of satellite-based methods is to study the thermal activity of Oldoinyo Lengai (OL) (Africa, Tanzania), which is the only volcano on Earth emitting natrocarbonatite lavas at a lower temperature (i.e., in the range 500–600 °C) than usual magmatic surfaces. In this work, we assess the potential of the RSTVOLC multi-temporal algorithm in detecting subtle hot spots at OL for comparison with MODLEN: A thermal anomaly detection method tailored to OL local conditions, by using Moderate Resolution Imaging Spectroradiometer (MODIS) data. Our results investigating the eruptive events of 2000–2008 using RSTVOLC reveal the occurrence of several undocumented thermal activities of OL, and may successfully integrate MODLEN observations. In spite of some known limitations strongly affecting the identification of volcanic thermal anomalies from space (e.g., cloud cover; occurrence of short-lived events), this work demonstrates that RSTVOLC may provide a very important contribution for monitoring the OL, identifying subtle hot spots showing values of the radiant flux even around 1 MW.


2020 ◽  
Author(s):  
Nicola Genzano ◽  
Francesco Marchese ◽  
Alfredo Falconieri ◽  
Giuseppe Mazzeo ◽  
Nicola Pergola

<p>NHI (Normalized Hotspot Indices) is an original multichannel algorithm recently developed for mapping volcanic thermal anomalies in daylight conditions by means of infrared Sentinel 2 MSI and Landsat 8 OLI data. The algorithm, which uses two normalized indices analyzing SWIR (Shortwave Infrared) and NIR (Near Infrared) radiances, was tested with success in different volcanic areas, assessing results by means of independent ground and satellite-based observations.</p><p>Here we present and describe the NHI-based tool, which exploits the high computation capabilities of Google Earth Engine to perform the rapid mapping of hot volcanic features at a global scale. The tool allows the users to retrieve information also about changes of thermal volcanic activity, giving the opportunity of performing time series analysis of hotspot pixel number and total SWIR radiance. Advantages of using the NHI tool as a complement to current satellite-based volcanoes monitoring systems are then analysed and discussed, such as its future upgrades.</p>


Author(s):  
Zhenzhen Wang ◽  
Jianjun Zhao ◽  
Jiawen Xu ◽  
Mingrui Jia ◽  
Han Li ◽  
...  

Northeast China is China’s primary grain production base. A large amount of crop straw is incinerated every spring and autumn, which greatly impacts air quality. To study the degree of influence of straw burning on urban pollutant concentrations, this study used The Moderate-Resolution Imaging Spectroradiometer/Terra Thermal Anomalies & Fire Daily L3 Global 1 km V006 (MOD14A1) and The Moderate-Resolution Imaging Spectroradiometer/Aqua Thermal Anomalies and Fire Daily L3 Global 1 km V006 (MYD14A1) data from 2015 to 2017 to extract fire spot data on arable land burning and to study the spatial distribution characteristics of straw burning on urban pollutant concentrations, temporal variation characteristics and impact thresholds. The results show that straw burning in Northeast China is concentrated in spring and autumn; the seasonal spatial distributions of PM2.5, PM10 andAir Quality Index (AQI) in 41 cities or regions in Northeast China correspond to the seasonal variation of fire spots; and pollutants appear in the peak periods of fire spots. In areas where the concentration coefficient of rice or corn is greater than 1, the number of fire spots has a strong correlation with the urban pollution index. The correlation coefficient R between the number of burned fire spots and the pollutant concentration has a certain relationship with the urban distribution. Cities are aggregated in geospatial space with different R values.


2021 ◽  
Vol 13 (2) ◽  
pp. 184
Author(s):  
Rongjie Liu ◽  
Jie Zhang ◽  
Tingwei Cui ◽  
Haocheng Yu

Spectral remote sensing reflectance (Rrs(λ), sr−1) is one of the most important products of ocean color satellite missions, where accuracy is essential for retrieval of in-water, bio-optical, and biogeochemical properties. For the Indian Ocean (IO), where Rrs(λ) accuracy has not been well documented, the quality of Rrs(λ) products from Moderate Resolution Imaging Spectroradiometer onboard both Terra (MODIS-Terra) and Aqua (MODIS-Aqua), and Visible Infrared Imaging Radiometer Suite onboard the Suomi National Polar-Orbiting Partnership spacecraft (VIIRS-NPP), is evaluated and inter-compared based on a quality assurance (QA) system, which can objectively grade each individual Rrs(λ) spectrum, with 1 for a perfect spectrum and 0 for an unusable spectrum. Taking the whole year of 2016 as an example, spatiotemporal pattern of Rrs(λ) quality in the Indian Ocean is characterized for the first time, and the underlying factors are elucidated. Specifically, QA analysis of the monthly Rrs(λ) over the IO indicates good quality with the average scores of 0.93 ± 0.02, 0.92 ± 0.02 and 0.92 ± 0.02 for VIIRS-NPP, MODIS-Aqua, and MODIS-Terra, respectively. Low-quality (~0.7) data are mainly found in the Bengal Bay (BB) from January to March, which can be attributed to the imperfect atmospheric correction due to anthropogenic absorptive aerosols transported by the northeasterly winter monsoon. Moreover, low-quality (~0.74) data are also found in the clear oligotrophic gyre zone (OZ) of the south IO in the second half of the year, possibly due to residual sun-glint contributions. These findings highlight the effects of monsoon-transported anthropogenic aerosols, and imperfect sun-glint removal on the Rrs(λ) quality. Further studies are advocated to improve the sun-glint correction in the oligotrophic gyre zone and aerosol correction in the complex ocean–atmosphere environment.


2021 ◽  
Vol 13 (9) ◽  
pp. 1627
Author(s):  
Chermelle B. Engel ◽  
Simon D. Jones ◽  
Karin J. Reinke

This paper introduces an enhanced version of the Biogeographical Region and Individual Geostationary HHMMSS Threshold (BRIGHT) algorithm. The algorithm runs in real-time and operates over 24 h to include both daytime and night-time detections. The algorithm was executed and tested on 12 months of Himawari-8 data from 1 April 2019 to 31 March 2020, for every valid 10-min observation. The resulting hotspots were compared to those from the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS). The modified BRIGHT hotspots matched with fire detections in VIIRS 96% and MODIS 95% of the time. The number of VIIRS and MODIS hotspots with matches in the coincident modified BRIGHT dataset was lower (at 33% and 46%, respectively). This paper demonstrates a clear link between the number of VIIRS and MODIS hotspots with matches and the minimum fire radiative power considered.


Sign in / Sign up

Export Citation Format

Share Document