scholarly journals Adaptive Neuro-Fuzzy Inference System and a Multilayer Perceptron Model Trained with Grey Wolf Optimizer for Predicting Solar Diffuse Fraction

Author(s):  
Randall Claywell ◽  
Nadai Laszlo ◽  
Felde Imre ◽  
Amir Mosavi

The accurate prediction of the solar Diffuse Fraction (DF), sometimes called the Diffuse Ratio, is an important topic for solar energy research. In the present study, the current state of Diffuse Irradiance research is discussed and then three robust, Machine Learning (ML) models, are examined using a large dataset (almost 8 years) of hourly readings from Almeria, Spain. The ML models used herein, are a hybrid Adaptive Network-based Fuzzy Inference System (ANFIS), a single Multi-Layer Perceptron (MLP) and a hybrid Multi-Layer Perceptron-Grey Wolf Optimizer (MLP-GWO). These models were evaluated for their predictive precision, using various Solar and Diffuse Fraction (DF) irradiance data, from Spain. The results were then evaluated using two frequently used evaluation criteria, the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE). The results showed that the MLP-GWO model, followed by the ANFIS model, provided a higher performance, in both the training and the testing procedures.

Entropy ◽  
2020 ◽  
Vol 22 (11) ◽  
pp. 1192
Author(s):  
Randall Claywell ◽  
Laszlo Nadai ◽  
Imre Felde ◽  
Sina Ardabili ◽  
Amirhosein Mosavi

The accurate prediction of the solar diffuse fraction (DF), sometimes called the diffuse ratio, is an important topic for solar energy research. In the present study, the current state of Diffuse irradiance research is discussed and then three robust, machine learning (ML) models are examined using a large dataset (almost eight years) of hourly readings from Almeria, Spain. The ML models used herein, are a hybrid adaptive network-based fuzzy inference system (ANFIS), a single multi-layer perceptron (MLP) and a hybrid multi-layer perceptron grey wolf optimizer (MLP-GWO). These models were evaluated for their predictive precision, using various solar and DF irradiance data, from Spain. The results were then evaluated using frequently used evaluation criteria, the mean absolute error (MAE), mean error (ME) and the root mean square error (RMSE). The results showed that the MLP-GWO model, followed by the ANFIS model, provided a higher performance in both the training and the testing procedures.


2020 ◽  
Author(s):  
Randall Claywell ◽  
Laszlo Nadai ◽  
Imre Felde ◽  
Amir Mosavi

Abstract The accurate prediction of the solar Diffuse Fraction (DF), sometimes called the Diffuse Ratio, is an important topic for solar energy research. In the present study, the current state of Diffuse Irradiance research is discussed and then three robust, Machine Learning (ML) models, are examined using a large dataset (almost 8 years) of hourly readings from Almeria, Spain. The ML models used herein, are a hybrid Adaptive Network-based Fuzzy Inference System (ANFIS), a single Multi-Layer Perceptron (MLP) and a hybrid Multi-Layer Perceptron-Grey Wolf Optimizer (MLP-GWO). These models were evaluated for their predictive precision, using various Solar and Diffuse Fraction (DF) irradiance data, from Spain. The results were then evaluated using two frequently used evaluation criteria, the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE). The results showed that the MLP-GWO model, followed by the ANFIS model, provided a higher performance, in both the training and the testing procedures.


2020 ◽  
Author(s):  
Randall Claywell ◽  
Laszlo Nadai ◽  
Felde Imre ◽  
Amir Mosavi

The accurate prediction of the solar Diffuse Fraction (DF), sometimes called the Diffuse Ratio, is an important topic for solar energy research. In the present study, the current state of Diffuse Irradiance research is discussed and then three robust, Machine Learning (ML) models, are examined using a large dataset (almost 8 years) of hourly readings from Almeria, Spain. The ML models used herein, are a hybrid Adaptive Network-based Fuzzy Inference System (ANFIS), a single Multi-Layer Perceptron (MLP) and a hybrid Multi-Layer Perceptron-Grey Wolf Optimizer (MLP-GWO). These models were evaluated for their predictive precision, using various Solar and Diffuse Fraction (DF) irradiance data, from Spain. The results were then evaluated using two frequently used evaluation criteria, the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE). The results showed that the MLP-GWO model, followed by the ANFIS model, provided a higher performance, in both the training and the testing procedures.


Intrusion Detection System (IDS) is the nearly all imperative constituent of computer network security. IDSs are designed to comprehend intrusion attempts in incoming network traffic shrewdly. It deals with big volume of data containing immaterial and outmoded features, which lead to delay in training as well as testing procedures. Therefore, to minimize the false alarm and computation complexity, the features selection technique for intrusion detection has been implemented. In this paper PCA (Principal Component Analysis) and Fuzzy Inference System (FIS) have been used on kdd99 dataset to develop FC-NIDS model. PCA is used to select the attacked features to minimize the computational work, while FIS is used to develop a fuzzy inference system for accuracy in prophecy using MATLAB. The results of the experiment are tested on UCI data sets as a standard bench-mark. It has been found efficient for true prediction of intrusion as well as to reduce the false alarm rate. The proposed fuzzy logic controller IDS (FC-NIDS), is passable to covenant with signature and anomaly based attacks to get enhanced intrusion detection, decreases false alarm and to optimize complexity.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 289 ◽  
Author(s):  
Majid Dehghani ◽  
Hossein Riahi-Madvar ◽  
Farhad Hooshyaripor ◽  
Amir Mosavi ◽  
Shahaboddin Shamshirband ◽  
...  

Hydropower is among the cleanest sources of energy. However, the rate of hydropower generation is profoundly affected by the inflow to the dam reservoirs. In this study, the Grey wolf optimization (GWO) method coupled with an adaptive neuro-fuzzy inference system (ANFIS) to forecast the hydropower generation. For this purpose, the Dez basin average of rainfall was calculated using Thiessen polygons. Twenty input combinations, including the inflow to the dam, the rainfall and the hydropower in the previous months were used, while the output in all the scenarios was one month of hydropower generation. Then, the coupled model was used to forecast the hydropower generation. Results indicated that the method was promising. GWO-ANFIS was capable of predicting the hydropower generation satisfactorily, while the ANFIS failed in nine input-output combinations.


2018 ◽  
Vol 931 ◽  
pp. 985-990
Author(s):  
Ahmed S. Khalil ◽  
Sergey V. Starovoytov ◽  
Nikolai S. Serpokrylov

The adaptive neuro-fuzzy inference system (ANFIS) model was developed to predict the removal of ammonium () from wastewater. The ANFIS model was developed and validated with a data set from a pilot-scale of adsorption system treating aqueous solutions and wastewater from fish farms. The data sets consist of four parameters, which include pH, temperature, an initial concentration of ammonium and amount of adsorbent. The adsorbent was biochar obtained from rice straw. The ANFIS models performance was assessed through the root mean absolute error (RMSE) and was validated by testing data. The results of the study show that the adaptive neuro-fuzzy inference system (ANFIS) is able to predict the percentage of ammonium removal from adsorption column according to the input variables with acceptable accuracy, suggesting that the adaptive neuro-fuzzy inference system model is a valuable tool for estimating the quality of fish farms water. This model of ANFIS leads to cost reduction because prediction can be done without resorting to efforts that require cost and time.


Sign in / Sign up

Export Citation Format

Share Document