scholarly journals Radical Reduction of Aircraft Fuel Consumption by Optimizing Aerofoil by New Evolutionary Algorithms

Author(s):  
Jan Müller

AbstractThis work deals with aerofoil aerodynamic features optimization, not only to improve flight features, but also to improve economy, ecology and safety of parameters of flight technique.In cruise mission, occupying the most flight time, the most important parameter is aerodynamic drag, which directly influences the aeroplane operational economy of transportation. Drag reduction is adequately reflected in the fuel consumption reduction. Consumption reduction is also adequately reflected in the flight ecology. In take-off and landing mission, the safety is priority and directly influences the aerofoil geometry.For cruise mission the new modified evolutionary algorithms (EA) are used to parameters incoming to Bezier-PARSEC 3434 parametrization. Such aerofoil is processed and evaluated by the Xfoil program. The change of model parameters results to optimal aerofoil shape.The DCAG (Direct Control Aerofoil Geometry) is unique developed mechanical device, makes possible the change of curvature of aerofoil, and also aerofoil geometry. DCAG is based on the rotary principle, which makes it possible to define the curvature of aerofoil for every roll as well as defining the geometry in the variable parts of aerofoil.For take-off and landing mission the best combination of slots and flaps is choosed. To improve of laminarity and reduce turbulent flow the DCAG is used.The work results to optimization, which is 50 times faster in comparison to ordinary optimization, with minimum of input parameters (flight speed, chord length, range of angles of attack and fitness function).The optimized aerofoil can achieve savings in fuel consumption up to 44% in comparison with unoptimized aerofoil, the aerodynamic drag reduction up to 44%.The output was checked by ANSYS Fluent simulation.

Author(s):  
Jan Muller

This work deals with aerofoil aerodynamic features optimization, not only to improve flight features, but also to improve economy, ecology and safety of parameters of flight technique. In cruise mission, occupying the most flight time, the most important parameter is aerodynamic drag, which directly influences the aeroplane operational economy of transportation. Drag reduction is adequately reflected in the fuel consumption reduction. Consumption reduction is also adequately reflected in the flight ecology. In take-off and landing mission, the safety is priority and directly influences the aerofoil geometry. For cruise mission the new modified evolutionary algorithms (EA) are used to parameters incoming to Bezier-PARSEC 3434 parametrization. Such aerofoil is processed and evaluated by the Xfoil program. The change of model parameters results to optimal aerofoil shape. The DCAG (Direct Control Aerofoil Geometry) is unique developed mechanical device, makes possible the change of curvature of aerofoil, and also aerofoil geometry. DCAG is based on the rotary principle, which makes it possible to define the curvature of aerofoil for every roll as well as defining the geometry in the variable parts of aerofoil. For take-off and landing mission the best combination of slots and flaps is choosed. To improve of laminarity and reduce turbulent flow the DCAG is used. The work results to optimization, which is 50 times faster in comparison to ordinary optimization, with minimum of input parameters (flight speed, chord length, range of angles of attack and fitness function). The optimized aerofoil can achieve savings in fuel consumption up to 44% in comparison with unoptimized aerofoil, the aerodynamic drag reduction up to 44%. The output was checked by ANSYS Fluent simulation.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Shubham Singh ◽  
M. Zunaid ◽  
Naushad Ahmad Ansari ◽  
Shikha Bahirani ◽  
Sumit Dhall ◽  
...  

CFD simulations using ANSYS FLUENT 6.3.26 have been performed on a generic SUV design and the settings are validated using the experimental results investigated by Khalighi. Moreover, an add-on inspired by the concept presented by Englar at GTRI for drag reduction has been designed and added to the generic SUV design. CFD results of add-on model and the basic SUV model have been compared for a number of aerodynamic parameters. Also drag coefficient, drag force, mean surface pressure, mean velocities, and Cp values at different locations in the wake have been compared for both models. The main objective of the study is to present a new add-on device which may be used on SUVs for increasing the fuel efficiency of the vehicle. Mean pressure results show an increase in the total base pressure on the SUV after using the device. An overall reduction of 8% in the aerodynamic drag coefficient on the add-on SUV has been investigated analytically in this study.


Author(s):  
Lakshay Khera ◽  
Niraj Kumar ◽  
Ambrish Maurya

Currently demand of Indian budget cars also called people’s car in India is in great demand and around 1 million cars have been sold in the last financial year with 12% increase of sales in every forthcoming year. These are categorized in sub 4m category of sedan, hatchbacks and medium size SUVs’ and their price ranges between 7 to 11 lakhs. The aerodynamics significantly affects the performance of the vehicle particularly at high speed. The manufactures are more focused on styling and giving a luxury look and other features of the car which sometimes make them to compromise on its aerodynamic design. This may lead to increase in fuel consumption at Indian road conditions. A cost-effective way to reduce fuel consumption, drag coefficient, lift force is to improve aerodynamic behavior and reduce the aerodynamic drag. The software used in this work is Solidworks, Ansys Fluent and commercial CFD post. Consequently, of using this software, it allows us to apply, learn and link technical knowledge of aerodynamics and computer knowledge.


Author(s):  
Anu R. Nair ◽  
Fred Barez ◽  
Ernie Thurlow ◽  
Metin Ozen

Heavy commercial vehicles due to their un-streamlined body shapes are aerodynamically inefficient due to higher fuel consumption as compared to passenger vehicles. The rising demand and use of fossil fuel escalate the amount of carbon dioxide emitted to the environment, thus more efficient tractor-trailer design becomes necessary to be developed. Fuel consumption can be reduced by either improving the driveline losses or by reducing the external forces acting on the truck. These external forces include rolling resistance and aerodynamic drag. When driving at most of the fuel is used to overcome the drag force, thus aerodynamic drag proves an area of interest to study to develop an efficient tractor-trailer design. Tractor-trailers are equipped with standard add-on components such as roof defectors, boat tails and side skirts. Modification of these components helps reduce drag coefficient and improve fuel efficiency. The objective of this study is to determine the most effective geometry of trailer add-on devices in semi-truck trailer design to reduce the drag coefficient to improve fuel efficiency and vehicle stability. The methodology consisted of CFD analysis on Mercedes Benz Actros using ANSYS FLUENT. The simulation was performed on the tractor-trailer at a speed of 30m/s. The analysis was performed with various types of add-on devices such as side skirts, boat tail and vortex generators. From the simulation results, it was observed that addition of tractor-trailer add-on devices proved beneficial over modifying trailer geometry. Combination of add-on devices in the trailer underbody, rear and front sections was more beneficial in reducing drag coefficient as compared to their individual application. Improving fuel efficiency by 17.74%. Stability of the tractor-trailer is improved due to the add-on devices creating a streamlined body and reducing the low-pressure region at the rear end of the trailer.


Author(s):  
A N M Mominul Islam Mukut ◽  
Mohammad Zoynal Abedin

Due to higher price, limited supply and negative impacts on environment by fossil fuel, automobile industries have directed their concentrations in reducing the fuel consumption of vehicles in order to achieve the lower aerodynamic drag. As a consequence, numerous researches have been carried out throughout the world for not only getting the optimum aerodynamic design with lower drag penalty and but also other parameters that increases the fuel consumption. In this regard, relevant experimental and numerical outcomes on vehicle drag reduction considering various techniques such as active, passive and combined techniques in order to delay or suppress flow separation behind the vehicles have been considered in this review paper. Furthermore, the effects of drag reduction and their applicability on the vehicles are also illustrated in this paper. Therefore, it is conjectured that the drag reduction has been improved as much as 20%, 21.2%, and 30% by using the active, passive and combined control systems, respectively.


2020 ◽  
Vol 21 (3) ◽  
pp. 633-640
Author(s):  
Jalal Faraj ◽  
Elias Harika ◽  
Mohamed Ramadan ◽  
Samer Ali ◽  
Fabien Harambat ◽  
...  

2016 ◽  
Vol 28 (3) ◽  
pp. 263-282 ◽  
Author(s):  
Yaghoub Pourasad ◽  
Amirhossein Ghanati ◽  
Mehrdad Khosravi

One of the primary concerns in the automotive industry is energy saving, protecting the global environment and fuel consumption reduction. The main purpose of this study is to develop optimal supplementary parts for reduction of aerodynamic force of highway tractor and trailer combinations to reduce aerodynamic drag, without negatively affecting the usefulness or profitability of the vehicles. In this article, the possibility to improve the aerodynamic performance for boosting fuel economy of trucks is studied by optimal designing of supplementary devices. That will be carried out by using integrated computational fluid dynamic and genetic algorithm for simulation and geometry optimization of applied devices. Also, simulation results are verified by experimental results in wind tunnel. For this purpose, effects of various supplementary devices and configuration are added to space between cabin and cargo compartment to stabilize the vortex and decrease the drag resistance force. Finally, the geometry of appended device with considering the installation and packing conditions is optimized by using a genetic algorithm. Through the analysis of airflow contours and optimization procedure, results indicate that using two plates at the sidewalls of the gap with optimized length and installation angle can reach the maximum reduction of drag force and fuel consumption by 20 and 10%, respectively.


Author(s):  
Krishnaswamy Mahadevan ◽  
Fred Barez ◽  
Ernie Thurlow ◽  
Davood Abdollahian

Automotive industry in continuously expected to produce more fuel-efficient vehicles. Increasing fuel prices and environmental concerns such as emission of CO2 are two areas in vehicle design improvement. There are multiple factors that affect the fuel economy such as rolling resistance, aerodynamic drag, and weight of the vehicle. As the speed of the vehicle increases, aerodynamic drag force becomes the dominating factor affecting the fuel consumption. This aerodynamic drag is a result of the low-pressure region created at the rear end of the vehicle. This low-pressure region is due to the relative square shape of the vehicle at the rear end which generates vortices. This project aims to investigate the effects of an underbody in reducing the aerodynamic drag forces and its effects on fuel usage. The underbody in vehicles is one such area in improving the aerodynamics of a vehicle which can have an impact on overall drag force. Various underbody geometry modifications were carried out on a 3D model of Fiat 500 Electric and Gasoline versions to simulate the effect of underbody geometry on fuel consumption using the CFD simulation tool ANSYS Fluent. It was concluded that the underbody of vehicle influences the overall aerodynamic drag by 20%. Underbody geometry modification helps in reducing the fuel consumption by decreasing the overall aerodynamic drag of the vehicle.


2021 ◽  
Vol 11 (22) ◽  
pp. 10516
Author(s):  
Issaree Srisomboon ◽  
Sanghwan Lee

Cooperative automated driving technology has emerged as a potential way to increase the efficiency of transportation systems and enhance traffic safety by allowing vehicles to exchange relevant information via wireless communication. Truck platooning utilizes this technology and achieves synchronized braking and acceleration, controlling two or more trucks simultaneously. This synchronized control makes driving with a very short inter-vehicle distance among trucks possible and reduces aerodynamic drag. This provides significant fuel consumption reduction, both in leading and trailing trucks, and achieves fuel-saving improvement. However, the static positioning sacrifices trucks in the front since they consume more fuel energy because of more air resistance than the rears. To solve this in-equivalent fuel consumption reduction benefit, this paper presents several heuristic algorithms to balance fuel consumption reduction and prolong the driving ranges by exploiting position changes among trucks in a platoon. Furthermore, the proposed algorithms try to reduce the number of position changes as much as possible to prevent any fuel waste caused by the unnecessary position change operations. In this manner, each truck in the platoon is likely to share a similar fuel consumption reduction with fewer position change counts, thus addressing the challenge of in-equivalent fuel savings distribution and obtaining optimal fuel efficiency. Our extensive simulation results show that the proposed algorithms can prolong the total distance by approximately 3% increased in two-truck platooning and even higher in six-trucks platooning of approximately 8%. Moreover, our proposed algorithms can decrease the position change count and ensure that trucks only switch to position arrangement once with no duplicate. Therefore, truck platooning obtains the maximum driving range with fewer position change counts, thus achieving efficient fuel saving.


Sign in / Sign up

Export Citation Format

Share Document