scholarly journals DNA Environment of Centromeres and Non-homologous Chromosomes Interactions in Mouse

Author(s):  
Victor Spangenberg ◽  
Losev Michail ◽  
Volkhin Ilya ◽  
Svetlana Smirnova ◽  
Nikitin Pavel ◽  
...  

Pericentromeric regions of chromosomes enriched in tandemly repeated satellite DNA although representing a significant part of eukaryotic genomes are still understudied mainly due to interdisciplinary knowledge gaps. Recent studies suggest their important role in genome regulation, karyotype stability and evolution. Thus, the idea of satellite DNA as a junk part of the genome was refuted. Integration of data about molecular composition, chromosome behaviour and details of in situ organization of pericentromeric regions is of great interest. The objective of this work was a cytogenetic analysis of the interactions of pericentromeric regions non-homologous chromosomes in mouse spermatocytes using immuno-FISH. We analysed two events: the associations between cerntomeric regions of X chromosome and autosomes, and associations between centromeric regions of autosomal bivalents forming chromocenters. We conclude that X chromosome form temporary synaptic associations with different autosomes in early meiotic prophase I which normally can be found at pachytene-diplotene without signs of pachytene arrest. These associations are formed between the satellite DNA-enriched centomeric regions of X chromosome and different autosomes but not involve the satellite-poor centromeric region of Y-chromosome. We suggest the mechanism of X chromosome competitive replacement from such associations during synaptic correction. We showed that centromeric region of the X chromosome remains free of γH2Ax-dependent chromatin inactivation, while Y chromosome is completely inactivated. This findings highlights the predominant role of associations between satellite DNA-enriched regions of different chromosomes including X. We assume that X-autosome temporary associations is a manifestation of an additional synaptic disorders checkpoint. These associations are normally corrected before the late diplotene. We revealed that the intense spreading conditions applied to the spermatocytes I nuclei did not lead to destruction of stretched chromatin fibers i.e. elongated chromocenters enriched in satellite DNA. Revealed by us tight associations between pericentromeric regions of different autosomal bivalents and X chromosome may represent the basis for repeat stability maintenance in autosomes an X chromosome. The consequences of our findings are discussed. We obtained the preparations of mouse spermatocytes nuclei in the meiotic prophase I using two approaches: standard and extremely intense surface spread techniques. Using immuno-FISH we visualized tandemly repeated mouse Major and Minor satellite DNA located in the pericentromeric regions of chromosomes and performed a morphological comparison of the standard- and intensely spreaded meiotic nuclei. Based on our results, we assume the remarkable strength of the chromocenter-mediated associations, “chromatin “bridges”, between different bivalents at the pachytene and diplotene stages. We have demonstrated that the chromocenter “bridges” between the centromeric ends of meiotic bivalents are enriched in both tandemly repeated Major and Minor satellite DNA. Association of centromeric regions of autosomal bivalents and X-chromosome but not with Y-chromosome correlates with the absence of Major and Minor satellites on Y-chromosome. We suggest that revealed tight associations between pericentromeric regions of bivalents may represent the network-like system providing dynamic stability of chromosomal territories, as well as add new data for the hypothesis of ectopic recombination in these regions which supports sequence homogeneity between non-homologous chromosomes and does not contradict the meiotic restrictions imposed by the crossing-over interference near centromeres. We conclude that nuclear architecture in meio-sis may play an essential role in contacts between the non-homologous chromosomes providing the specific characteristics of pericentromeric DNA.

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3375
Author(s):  
Victor Spangenberg ◽  
Mikhail Losev ◽  
Ilya Volkhin ◽  
Svetlana Smirnova ◽  
Pavel Nikitin ◽  
...  

Although the pericentromeric regions of chromosomes that are enriched in tandemly repeated satellite DNA represent a significant part of eukaryotic genomes, they remain understudied, which is mainly due to interdisciplinary knowledge gaps. Recent studies suggest their important role in genome regulation, karyotype stability, and evolution. Thus, the idea of satellite DNA as a junk part of the genome has been refuted. The integration of data regarding molecular composition, chromosome behaviour, and the details of the in situ organization of pericentromeric regions is of great interest. The objective of this work was a cytogenetic analysis of the interactions between pericentromeric regions from non-homologous chromosomes in mouse spermatocytes using immuno-FISH. We analysed two events: the associations between centromeric regions of the X chromosome and autosomes and the associations between the centromeric regions of the autosomal bivalents that form chromocenters. We concluded that the X chromosome forms temporary synaptic associations with different autosomes in early meiotic prophase I, which can normally be found until the pachytene–diplotene, without signs of pachytene arrest. These associations are formed between the satellite-DNA-rich centromeric regions of the X chromosome and different autosomes but do not involve the satellite-DNA-poor centromeric region of the Y chromosome. We suggest the hypothetical model of X chromosome competitive replacement from such associations during synaptic correction. We showed that the centromeric region of the X chromosome in association remains free of γH2Ax-dependent chromatin inactivation, while the Y chromosome is completely inactivated. This finding highlights the predominant role of associations between satellite DNA-rich regions of different chromosomes, including the X chromosome. We suppose that X-autosomal transient associations are a manifestation of an additional synaptic disorder checkpoint. These associations are normally corrected before the late diplotene stage. We revealed that the intense spreading conditions that were applied to the spermatocyte I nuclei did not lead to the destruction of stretched chromatin fibers of elongated chromocenters enriched in satellite DNA. The tight associations that we revealed between the pericentromeric regions of different autosomal bivalents and the X chromosome may represent the basis for a mechanism for maintaining the repeats stability in the autosomes and in the X chromosome. The consequences of our findings are discussed.


2013 ◽  
Vol 24 (7) ◽  
pp. 1053-1067 ◽  
Author(s):  
Amy M. Clemons ◽  
Heather M. Brockway ◽  
Yizhi Yin ◽  
Bhavatharini Kasinathan ◽  
Yaron S. Butterfield ◽  
...  

During meiosis, evolutionarily conserved mechanisms regulate chromosome remodeling, leading to the formation of a tight bivalent structure. This bivalent, a linked pair of homologous chromosomes, is essential for proper chromosome segregation in meiosis. The formation of a tight bivalent involves chromosome condensation and restructuring around the crossover. The synaptonemal complex (SC), which mediates homologous chromosome association before crossover formation, disassembles concurrently with increased condensation during bivalent remodeling. Both chromosome condensation and SC disassembly are likely critical steps in acquiring functional bivalent structure. The mechanisms controlling SC disassembly, however, remain unclear. Here we identify akir-1 as a gene involved in key events of meiotic prophase I in Caenorhabditis elegans. AKIR-1 is a protein conserved among metazoans that lacks any previously known function in meiosis. We show that akir-1 mutants exhibit severe meiotic defects in late prophase I, including improper disassembly of the SC and aberrant chromosome condensation, independently of the condensin complexes. These late-prophase defects then lead to aberrant reconfiguring of the bivalent. The meiotic divisions are delayed in akir-1 mutants and are accompanied by lagging chromosomes. Our analysis therefore provides evidence for an important role of proper SC disassembly in configuring a functional bivalent structure.


2016 ◽  
Vol 114 (3) ◽  
pp. 592-597 ◽  
Author(s):  
Zhaowei Tu ◽  
Mustafa Bilal Bayazit ◽  
Hongbin Liu ◽  
Jingjing Zhang ◽  
Kiran Busayavalasa ◽  
...  

Telomere attachment to the nuclear envelope (NE) is a prerequisite for chromosome movement during meiotic prophase I that is required for pairing of homologous chromosomes, synapsis, and homologous recombination. Here we show that Speedy A, a noncanonical activator of cyclin-dependent kinases (Cdks), is specifically localized to telomeres in prophase I male and female germ cells in mice, and plays an essential role in the telomere–NE attachment. Deletion of Spdya in mice disrupts telomere–NE attachment, and this impairs homologous pairing and synapsis and leads to zygotene arrest in male and female germ cells. In addition, we have identified a telomere localization domain on Speedy A covering the distal N terminus and the Cdk2-binding Ringo domain, and this domain is essential for the localization of Speedy A to telomeres. Furthermore, we found that the binding of Cdk2 to Speedy A is indispensable for Cdk2’s localization on telomeres, suggesting that Speedy A and Cdk2 might be the initial components that are recruited to the NE for forming the meiotic telomere complex. However, Speedy A-Cdk2–mediated telomere–NE attachment is independent of Cdk2 activation. Our results thus indicate that Speedy A and Cdk2 might mediate the initial telomere–NE attachment for the efficient assembly of the telomere complex that is essential for meiotic prophase I progression.


2018 ◽  
Author(s):  
Kiran Challa ◽  
V Ghanim Fajish ◽  
Miki Shinohara ◽  
Franz Klein ◽  
Susan M. Gasser ◽  
...  

AbstractSister chromatid cohesion on chromosome arms is essential for the segregation of homologous chromosomes during meiosis I while it is dispensable for sister chromatid separation during mitosis. It was assumed that, unlike the situation in mitosis, chromosome arms retain cohesion prior to onset of anaphase-I. Paradoxically, reduced immunostaining signals of meiosis-specific cohesin, including the kleisin Rec8, from the chromosomes were observed during late prophase-I of budding yeast. This decrease is seen in the absence of Rec8 cleavage and depends on condensin-mediated recruitment of Polo-like kinase (PLK/Cdc5). In this study, we confirmed that this release indeed accompanies the dissociation of acetylated Smc3 as well as Rec8 from meiotic chromosomes during late prophase-I. This release requires, in addition to PLK, the cohesin regulator, Wapl (Rad61/Wpl1 in yeast), and Dbf4-dependent Cdc7 kinase (DDK). Meiosis-specific phosphorylation of Rad61/Wpl1 and Rec8 by PLK and DDK collaboratively promote this release. This process is similar to the vertebrate “prophase” pathway for cohesin release during G2 phase and pro-metaphase. In yeast, meiotic cohesin release coincides with PLK-dependent compaction of chromosomes in late meiotic prophase-I. We suggest that yeast uses this highly regulated cleavage-independent pathway to remove cohesin during late prophase-I to facilitate morphogenesis of condensed metaphase-I chromosomes.Author SummaryIn meiosis the life and health of future generations is decided upon. Any failure in chromosome segregation has a detrimental impact. Therefore, it is currently believed that the physical connections between homologous chromosomes are maintained by meiotic cohesin with exceptional stability. Indeed, it was shown that cohesive cohesin does not show an appreciable turnover during long periods in oocyte development. In this context, it was long assumed but not properly investigated, that the prophase pathway for cohesin release would be specific to mitotic cells and will be safely suppressed during meiosis so as not to endanger the valuable chromosome connections. However, a previous study on budding yeast meiosis suggests the presence of cleavage-independent pathway of cohesin release during late prophase-I. In the work presented here we confirmed that the prophase pathway is not suppressed during meiosis, at least in budding yeast and showed that this cleavage-independent release is regulated by meiosis-specific phosphorylation of two cohesin subunits, Rec8 and Rad61(Wapl) by two cell-cycle regulators, PLK and DDK. Our results suggest that late meiotic prophase-I actively controls cohesin dynamics on meiotic chromosomes for chromosome segregation.


2020 ◽  
Author(s):  
Ronald Biggs ◽  
Ning Liu ◽  
Yiheng Peng ◽  
John F. Marko ◽  
Huanyu Qiao

Meiosis produces four haploid cells after two successive divisions in sexually reproducing organisms. A critical event during meiosis is construction of the synaptonemal complex (SC), a large, protein-based bridge that physically links homologous chromosomes. The SC facilitates meiotic recombination, chromosome compaction, and the eventual separation of homologous chromosomes at metaphase I. We present experiments directly measuring physical properties of captured mammalian meiotic prophase I chromosomes. Mouse meiotic chromosomes are about ten-fold stiffer than somatic mitotic chromosomes, even for genetic mutants lacking SYCP1, the central element of the SC. Meiotic chromosomes dissolve when treated with nucleases, but only weaken when treated with proteases, suggesting that the SC is not rigidly connected, and that meiotic prophase I chromosomes are a gel meshwork of chromatin, similar to mitotic chromosomes. These results are consistent with a liquid- or liquid-crystal SC, but with SC-chromatin stiff enough to mechanically drive crossover interference.


Genes ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 386 ◽  
Author(s):  
Sergey Matveevsky ◽  
Oxana Kolomiets ◽  
Aleksey Bogdanov ◽  
Elena Alpeeva ◽  
Irina Bakloushinskaya

Robertsonian translocations are common chromosomal alterations. Chromosome variability affects human health and natural evolution. Despite the significance of such mutations, no mechanisms explaining the emergence of such translocations have yet been demonstrated. Several models have explored possible changes in interphase nuclei. Evidence for non-homologous chromosomes end joining in meiosis is scarce, and is often limited to uncovering mechanisms in damaged cells only. This study presents a primarily qualitative analysis of contacts of non-homologous chromosomes by short arms, during meiotic prophase I in the mole vole, Ellobius alaicus, a species with a variable karyotype, due to Robertsonian translocations. Immunocytochemical staining of spermatocytes demonstrated the presence of four contact types for non-homologous chromosomes in meiotic prophase I: (1) proximity, (2) touching, (3) anchoring/tethering, and (4) fusion. Our results suggest distinct mechanisms for chromosomal interactions in meiosis. Thus, we propose to change the translocation mechanism model from ‘contact first’ to ‘contact first in meiosis’.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ronald J. Biggs ◽  
Ning Liu ◽  
Yiheng Peng ◽  
John F. Marko ◽  
Huanyu Qiao

Abstract Meiosis produces four haploid cells after two successive divisions in sexually reproducing organisms. A critical event during meiosis is construction of the synaptonemal complex (SC), a large, protein-based bridge that physically links homologous chromosomes. The SC facilitates meiotic recombination, chromosome compaction, and the eventual separation of homologous chromosomes at metaphase I. We present experiments directly measuring physical properties of captured mammalian meiotic prophase I chromosomes. Mouse meiotic chromosomes are about ten-fold stiffer than somatic mitotic chromosomes, even for genetic mutants lacking SYCP1, the central element of the SC. Meiotic chromosomes dissolve when treated with nucleases, but only weaken when treated with proteases, suggesting that the SC is not rigidly connected, and that meiotic prophase I chromosomes are a gel meshwork of chromatin, similar to mitotic chromosomes. These results are consistent with a liquid- or liquid-crystal SC, but with SC-chromatin stiff enough to mechanically drive crossover interference.


2019 ◽  
Author(s):  
Rong Hua ◽  
Huafang Wei ◽  
Chao Liu ◽  
Yue Zhang ◽  
Siyu Liu ◽  
...  

Abstract During meiosis, telomere attachment to the inner nuclear envelope is required for proper pairing of homologous chromosomes and recombination. Here, we identified F-box protein 47 (FBXO47) as a regulator of the telomeric shelterin complex that is specifically expressed during meiotic prophase I. Knockout of Fbxo47 in mice leads to infertility in males. We found that the Fbxo47 deficient spermatocytes are unable to form a complete synaptonemal complex. FBXO47 interacts with TRF1/2, and the disruption of Fbxo47 destabilizes TRF2, leading to unstable telomere attachment and slow traversing through the bouquet stage. Our findings uncover a novel mechanism of FBXO47 in telomeric shelterin subunit stabilization during meiosis.


Genetics ◽  
2003 ◽  
Vol 163 (2) ◽  
pp. 539-544 ◽  
Author(s):  
Hasanuzzaman Bhuiyan ◽  
Gunilla Dahlfors ◽  
Karin Schmekel

Abstract The synaptonemal complex (SC) keeps the synapsed homologous chromosomes together during pachytene in meiotic prophase I. Structures that resemble stacks of SCs, polycomplexes, are sometimes found before or after pachytene. We have investigated ndt80 mutants of yeast, which arrest in pachytene. SCs appear normal in spread chromosome preparations, but are only occasionally found in intact nuclei examined in the electron microscope. Instead, large polycomplexes occur in almost every ndt80 mutant nucleus. Immunoelectron microscopy using DNA antibodies show strong preferential labeling to the lateral element parts of the polycomplexes. In situ hybridization using chromosome-specific probes confirms that the chromosomes in ndt80 mutants are paired and attached to the SCs. Our results suggest that polycomplexes can be involved in binding of chromosomes and possibly also in synapsis.


Sign in / Sign up

Export Citation Format

Share Document