scholarly journals Identification of Stage-related and Severity-Related Biomarkers and Exploration of Immune Landscape for Dengue by Comprehensive Analyses

Author(s):  
Nan Xiong ◽  
Qiangming Sun

At present, there are still no specific therapeutic drugs and appropriate vaccines for Dengue. Therefore, it is very important to explore distinct clinical diagnostic indicators. In this study, we combined differentially expressed genes (DEGs) analysis and weighted co-expression network analysis (WGCNA) to screen a stable and robust biomarker which can be used to distinguish three clinical stages of Dengue and severity of Dengue. CD38 can distinguish excellently Early Acute, Late Acute, Convalescent stages for Dengue patients, and ZNF595 can discriminate DHF from DF in whole acute stages. We also found that three clinical stages can be discriminated based on the fractions of Plasma cells, activated memory CD4+ T cells, and Monocytes. In different clinical stages different immune cells function positively. Negative inhibition of viral replication based on Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene set enrichment analysis (GSEA), up-regulated autophagy genes and impairing immune system are potential reasons resulting in dengue hemorrhagic fever (DHF).

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yang Shen ◽  
Li-rong Xu ◽  
Xiao Tang ◽  
Chang-po Lin ◽  
Dong Yan ◽  
...  

Abstract Background Atherosclerosis is a chronic inflammatory disease that affects multiple arteries. Numerous studies have shown the inherent immune diversity in atheromatous plaques and suggest that the dysfunction of different immune cells plays an important role in atherosclerosis. However, few comprehensive bioinformatics analyses have investigated the potential coordinators that might orchestrate different immune cells to exacerbate atherosclerosis. Methods Immune infiltration of 69 atheromatous plaques from different arterial beds in GSE100927 were explored by single-sample-gene-set enrichment analysis (presented as ssGSEA scores), ESTIMATE algorithm (presented as immune scores) and CIBERSORT algorithm (presented as relative fractions of 22 types of immune cells) to divide these plaques into ImmuneScoreL cluster (of low immune infiltration) and ImmuneScoreH cluster (of high immune infiltration). Subsequently, comprehensive bioinformatics analyses including differentially-expressed-genes (DEGs) analysis, protein–protein interaction networks analysis, hub genes analysis, Gene-Ontology-terms and KEGG pathway enrichment analysis, gene set enrichment analysis, analysis of expression profiles of immune-related genes, correlation analysis between DEGs and hub genes and immune cells were conducted. GSE28829 was analysed to cross-validate the results in GSE100927. Results Immune-related pathways, including interferon-related pathways and PD-1 signalling, were highly enriched in the ImmuneScoreH cluster. HLA-related (except for HLA-DRB6) and immune checkpoint genes (IDO1, PDCD-1, CD274(PD-L1), CD47), RORC, IFNGR1, STAT1 and JAK2 were upregulated in the ImmuneScoreH cluster, whereas FTO, CRY1, RORB, and PER1 were downregulated. Atheromatous plaques in the ImmuneScoreH cluster had higher proportions of M0 macrophages and gamma delta T cells but lower proportions of plasma cells and monocytes (p < 0.05). CAPG, CECR1, IL18, IGSF6, FBP1, HLA-DPA1 and MMP7 were commonly related to these immune cells. In addition, the advanced-stage carotid plaques in GSE28829 exhibited higher immune infiltration than early-stage carotid plaques. Conclusions Atheromatous plaques with higher immune scores were likely at a more clinically advanced stage. The progression of atherosclerosis might be related to CAPG, IGSF6, IL18, CECR1, FBP1, MMP7, FTO, CRY1, RORB, RORC, PER1, HLA-DPA1 and immune-related pathways (IFN-γ pathway and PD-1 signalling pathway). These genes and pathways might play important roles in regulating immune cells such as M0 macrophages, gamma delta T cells, plasma cells and monocytes and might serve as potential therapeutic targets for atherosclerosis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jian Zhou ◽  
Menghui Zhang ◽  
Yan Zhang ◽  
Xi Shi ◽  
Linlin Liu ◽  
...  

Multiple myeloma (MM) is a malignant disease of plasma cells, which remains incurable because of its unclear mechanism and drug resistance. Herein, we aimed to explore new biomarkers and therapeutic targets in MM. After screening differentially expressed genes (DEGs) in GSE6477 and GSE13591 dataset, we performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of DEGs using DAVID online database. The results indicated that the downregulated DEGs were mainly enriched in the immune-associated biological process. The protein–protein interaction network was constructed by STRING database, on which we performed module analysis and identified key genes. Gene set enrichment analysis (GSEA) and Kaplan–Meier analysis showed that RRM2 could be a novel biomarker in MM diagnosis. We further confirmed that novel RRM2 inhibitor osalmid inhibited MM cell proliferation and triggered cell cycle S phase arrest. Targeting RRM2 was expected to develop new therapeutic strategies for malignant MM.


2020 ◽  
Vol 15 ◽  
Author(s):  
Wei Han ◽  
Dongchen Lu ◽  
Chonggao Wang ◽  
Mengdi Cui ◽  
Kai Lu

Background: In the past decades, the incidence of thyroid cancer (TC) has been gradually increasing, owing to the widespread use of ultrasound scanning devices. However, the key mRNAs, miRNAs, and mRNA-miRNA network in papillary thyroid carcinoma (PTC) has not been fully understood. Material and Methods: In this study, multiple bioinformatics methods were employed, including differential expression analysis, gene set enrichment analysis, and miRNA-mRNA interaction network construction. Results: First, we investigated the key miRNAs that regulated significantly more differentially expressed genes based on GSEA method. Second, we searched for the key miRNAs based on the mRNA-miRNA interaction subnetwork involved in PTC. We identified hsa-mir-1275, hsa-mir-1291, hsa-mir-206 and hsa-mir-375 as the key miRNAs involved in PTC pathogenesis. Conclusion: The integrated analysis of the gene and miRNA expression data not only identified key mRNAs, miRNAs, and mRNA-miRNA network involved in papillary thyroid carcinoma, but also improved our understanding of the pathogenesis of PTC.


2021 ◽  
Vol 22 (14) ◽  
pp. 7654
Author(s):  
Chelsie B. Steinhauser ◽  
Colleen A. Lambo ◽  
Katharine Askelson ◽  
Gregory W. Burns ◽  
Susanta K. Behura ◽  
...  

Placental development is modified in response to maternal nutrient restriction (NR), resulting in a spectrum of fetal growth rates. Pregnant sheep carrying singleton fetuses and fed either 100% (n = 8) or 50% (NR; n = 28) of their National Research Council (NRC) recommended intake from days 35–135 of pregnancy were used to elucidate placentome transcriptome alterations at both day 70 and day 135. NR fetuses were further designated into upper (NR NonSGA; n = 7) and lower quartiles (NR SGA; n = 7) based on day 135 fetal weight. At day 70 of pregnancy, there were 22 genes dysregulated between NR SGA and 100% NRC placentomes, 27 genes between NR NonSGA and 100% NRC placentomes, and 22 genes between NR SGA and NR NonSGA placentomes. These genes mediated molecular functions such as MHC class II protein binding, signaling receptor binding, and cytokine activity. Gene set enrichment analysis (GSEA) revealed significant overrepresentation of genes for natural-killer-cell-mediated cytotoxicity in NR SGA compared to 100% NRC placentomes, and alterations in nutrient utilization pathways between NR SGA and NR NonSGA placentomes at day 70. Results identify novel factors associated with impaired function in SGA placentomes and potential for placentomes from NR NonSGA pregnancies to adapt to nutritional hardship.


2019 ◽  
Vol 8 (10) ◽  
pp. 1580 ◽  
Author(s):  
Kyoung Min Moon ◽  
Kyueng-Whan Min ◽  
Mi-Hye Kim ◽  
Dong-Hoon Kim ◽  
Byoung Kwan Son ◽  
...  

Ninety percent of patients with scrub typhus (SC) with vasculitis-like syndrome recover after mild symptoms; however, 10% can suffer serious complications, such as acute respiratory failure (ARF) and admission to the intensive care unit (ICU). Predictors for the progression of SC have not yet been established, and conventional scoring systems for ICU patients are insufficient to predict severity. We aimed to identify simple and robust indicators to predict aggressive behaviors of SC. We evaluated 91 patients with SC and 81 non-SC patients who were admitted to the ICU, and 32 cases from the public functional genomics data repository for gene expression analysis. We analyzed the relationships between several predictors and clinicopathological characteristics in patients with SC. We performed gene set enrichment analysis (GSEA) to identify SC-specific gene sets. The acid-base imbalance (ABI), measured 24 h before serious complications, was higher in patients with SC than in non-SC patients. A high ABI was associated with an increased incidence of ARF, leading to mechanical ventilation and worse survival. GSEA revealed that SC correlated to gene sets reflecting inflammation/apoptotic response and airway inflammation. ABI can be used to indicate ARF in patients with SC and assist with early detection.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Mike Fang ◽  
Brian Richardson ◽  
Cheryl M. Cameron ◽  
Jean-Eudes Dazard ◽  
Mark J. Cameron

Abstract Background In this study, we demonstrate that our modified Gene Set Enrichment Analysis (GSEA) method, drug perturbation GSEA (dpGSEA), can detect phenotypically relevant drug targets through a unique transcriptomic enrichment that emphasizes biological directionality of drug-derived gene sets. Results We detail our dpGSEA method and show its effectiveness in detecting specific perturbation of drugs in independent public datasets by confirming fluvastatin, paclitaxel, and rosiglitazone perturbation in gastroenteropancreatic neuroendocrine tumor cells. In drug discovery experiments, we found that dpGSEA was able to detect phenotypically relevant drug targets in previously published differentially expressed genes of CD4+T regulatory cells from immune responders and non-responders to antiviral therapy in HIV-infected individuals, such as those involved with virion replication, cell cycle dysfunction, and mitochondrial dysfunction. dpGSEA is publicly available at https://github.com/sxf296/drug_targeting. Conclusions dpGSEA is an approach that uniquely enriches on drug-defined gene sets while considering directionality of gene modulation. We recommend dpGSEA as an exploratory tool to screen for possible drug targeting molecules.


2021 ◽  
Vol 44 (3) ◽  
pp. E32-44
Author(s):  
Jia Shen ◽  
Ming Shu ◽  
Shujie Xie ◽  
Jia Yan ◽  
Kaile Pan ◽  
...  

Purpose: This study aimed to screen hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC)-related feature ribonucleic acids (RNAs) and to establish a prognostic model. Methods: The transcriptome expression data of HBV-associated HCC were downloaded from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus database. Differential RNAs between HBV-associated HCC and normal controls were identified by a meta-analysis of TCGA, GSE55092 and GSE121248. Weighted gene co-expression network analysis was performed to identify key RNAs and modules. A prognostic score model was established using TCGA as a training set by Cox regression analysis and was validated in E-TABM-36 dataset. Additionally, independent prognostic clinical factors were screened, and the function of lncRNAs waspredicted through Gene Set Enrichment Analysis. Results: A total of 710 consistent differential RNAs between HBV-associated HCC and normal controls were obtained, including five lncRNAs and 705 mRNAs. An optimized combination of six differential RNAs (DSCR4, DBH, ECM1, GDAP1, MATR3 and RFC4) was selected and a prognostic score model was constructed. Kaplan-Meier analysis demonstrated that the prognosis of the high-risk and low-risk groups separated by this model was significantly different in the training set and the validation set. Gene Set Enrichment Analysis showed that the co-expression genes of DSCR4 were significantly correlated with neuroactive ligand receptor interactionpathway. Conclusion: A prognostic model based on DSCR4, DBH, ECM1, GDAP1, MATR3 and RFC4 was developed that can accurately predict the prognosis of patients with HBV-associated HCC. These genes, as well as histologic grade, may serve as independent prognostic factors in HBV-associated HCC.


2021 ◽  
Author(s):  
Yanjia Hu ◽  
Jing Zhang ◽  
Jing Chen

Abstract Background Hypoxia-related long non-coding RNAs (lncRNAs) have been proven to play a role in multiple cancers and can serve as prognostic markers. Lower-grade gliomas (LGGs) are characterized by large heterogeneity. Methods This study aimed to construct a hypoxia-related lncRNA signature for predicting the prognosis of LGG patients. Transcriptome and clinical data of LGG patients were obtained from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). LGG cohort in TCGA was chosen as training set and LGG cohorts in CGGA served as validation sets. A prognostic signature consisting of fourteen hypoxia-related lncRNAs was constructed using univariate and LASSO Cox regression. A risk score formula involving the fourteen lncRNAs was developed to calculate the risk score and patients were classified into high- and low-risk groups based on cutoff. Kaplan-Meier survival analysis was used to compare the survival between two groups. Cox regression analysis was used to determine whether risk score was an independent prognostic factor. A nomogram was then constructed based on independent prognostic factors and assessed by C-index and calibration plot. Gene set enrichment analysis and immune cell infiltration analysis were performed to uncover further mechanisms of this lncRNA signature. Results LGG patients with high risk had poorer prognosis than those with low risk in both training and validation sets. Recipient operating characteristic curves showed good performance of the prognostic signature. Univariate and multivariate Cox regression confirmed that the established lncRNA signature was an independent prognostic factor. C-index and calibration plots showed good predictive performance of nomogram. Gene set enrichment analysis showed that genes in the high-risk group were enriched in apoptosis, cell adhesion, pathways in cancer, hypoxia etc. Immune cells were higher in high-risk group. Conclusion The present study showed the value of the 14-lncRNA signature in predicting survival of LGGs and these 14 lncRNAs could be further investigated to reveal more mechanisms involved in gliomas.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi31-vi31
Author(s):  
Jong-Whi Park ◽  
Felix Sahm ◽  
Bianca Steffl ◽  
Isabel Arrillaga-Romany ◽  
Daniel Cahill ◽  
...  

Abstract BACKGROUND Decitabine (DAC)-incorporated DNA binds DNMT1 enzyme and subsequently triggers DNMT1 degradation. Previously, we showed that DAC can mediate the anti-tumor effect in a preclinical model of IDH-mutant gliomas. Here, we further investigate molecular determinants of response to DAC in gliomas. METHODS DAC response was assessed by soft agar anchorage independent growth assays and cell proliferation measurements. Patient-derived IDH-mutant chromosome 1p/19q codeleted (codel) and non-codel glioma lines upon vehicle and DAC treatment were used for RNA sequencing and Gene Set Enrichment Analysis (GSEA). RESULTS We found that DAC treatment is effective in high TERT-expressing gliomas including IDH-mutant and IDH-wildtype glioma lines. In contrast, pharmacological inhibition of TERT reduces DAC response in glioma lines. Interestingly, transcriptomic profiling showed that DAC reduces the expression of TERT, along with increased CDKN1A/p21 expression. We experimentally validated that TERT expression depends on CDKN1A/p21. Furthermore, p53 is required for DAC-mediated CDKN1A/p21 induction. Importantly, DAC-mediated proliferation defects in TERT-proficient glioma cells are abolished by DNMT1 knockdown, indicative of an expected DAC mechanism. CONCLUSIONS DAC could elicit the pronounced anti-tumor response in IDH-mutant codel oligodendroglioma and IDH-wildtype glioblastoma with TERT activating mutations.


Sign in / Sign up

Export Citation Format

Share Document