scholarly journals Quantum Jumps Revisited

Author(s):  
Leonardo Chiatti ◽  
Ignazio Licata

A theoretical description of quantum jumps at the level of elementary particles is proposed, based on a micro-cosmological interpretation of their de Broglie phase. The third quantization formalism proposed in current literature for the description of baby universes in quantum cosmology is used here to describe the breakdown of unitarity in the transition from the pre-jump to the post-jump wave function. The corpuscular aspect manifested by the particle in the micro-interaction that originates the jump is represented by a pair of evanescent "micro-universes", respectively pre- and post-jump, connected by a wormhole. The latter represents the actual implementation of the interaction that leads to the projection on the outgoing state; this interaction is always local, even when the selected outgoing state is entangled. Therefore, the decoherence which leads to the emergence of classicality is originated by the same fundamental interactions of the Standard Model involved in the unitary evolution of the wave function. The objective nature of the reduction process admits implications on the possibility of using the formalism in the cosmological context, which are briefly discussed.

2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Sheldon Lee Glashow

The third and final installment in Sheldon Lee Glashow’s history of physics. In this essay Glashow examines a development in which he played a key role, the formulation of the Standard Model.


1988 ◽  
Vol 37 (11) ◽  
pp. 4303-4308 ◽  
Author(s):  
D. T. Pegg ◽  
P. L. Knight

2016 ◽  
Vol 30 (13) ◽  
pp. 1650180 ◽  
Author(s):  
Pavel A. Andreev

We consider contribution of the radiation damping in the quantum hydrodynamic (QHD) equations for spinless particles. We discuss possibility of obtaining corresponding nonlinear Schrödinger equation (NLSE) for the macroscopic wave function. We compare contribution of the radiation damping with weakly (or semi-) relativistic effects appearing in the second-order on [Formula: see text]. The radiation damping appears in the third-order on [Formula: see text]. So it might be smaller than weakly relativistic effects, but it gives damping of the Langmuir waves which can be considerable.


2016 ◽  
Vol 31 (23) ◽  
pp. 1630036 ◽  
Author(s):  
Ahmed Ali

Experimental era of rare [Formula: see text]-decays started with the measurement of [Formula: see text] by CLEO in 1993, followed by the measurement of the inclusive decay [Formula: see text] in 1995, which serves as the standard candle in this field. The frontier has moved in the meanwhile to the experiments at the LHC, in particular, LHCb, with the decay [Formula: see text] at about 1 part in 10[Formula: see text] being the smallest branching fraction measured so far. Experimental precision achieved in this area has put the standard model to unprecedented stringent tests and more are in the offing in the near future. I review some key measurements in radiative, semileptonic and leptonic rare [Formula: see text]-decays, contrast them with their estimates in the SM, and focus on several mismatches reported recently. They are too numerous to be ignored, yet, standing alone, none of them is significant enough to warrant the breakdown of the SM. Rare [Formula: see text]-decays find themselves at the crossroads, possibly pointing to new horizons, but quite likely requiring an improved theoretical description in the context of the SM. An independent precision experiment such as Belle II may help greatly in clearing some of the current experimental issues.


2020 ◽  
pp. 101-104
Author(s):  
S.F. Skoromnaya ◽  
V.I. Tkachenko

The main parameters of the standard model of the Sun are considered, according to which the Sun is considered as a spherically symmetric and quasistatic star, and thermonuclear reactions of the pp-cycle mainly occur inside it and the energy is uniformly released at a rate of 2·10-4J/(kg·s). Based on observational data it was concluded that the Sun is not a star with uniformly ongoing processes, it is characterized by oscillatory processes and flashes. It is proposed to consider the non-stationary model of the Sun, in which it is required to take into account the existence of electromagnetic waves in the plasma of the solar core and, as a result, the existence of wave collapses (WC). A three-dimensional axially symmetric WC is considered and an estimate of the velocity of removal of the plasma of the solar core during the development of a three-dimensional axially symmetric WC is given. For the considered WC the existence of three directions of flows of elementary plasma volumes relative to the observer is demonstrated: one direction is due to the moving the elementary plasma volume from the observer and the other  to him. The third direction of moving of the elementary plasma volumes is perpendicular to the direction of observation and their velocity relative to the observer is zero. It is concluded that the existence of such motions of elementary plasma volumes during the development of WC can leave a definite imprint on the parameters of the synthesis products in them.


2021 ◽  
Vol 12 (3) ◽  
pp. 3012-3018

In this work, we describe theoretically the possibility of omeprazole electrochemical determination, assisted by the composite containing vanadium oxyhydroxide as an active substance and the polymer of 1,2,4-triazolic derivative as a mediator. The omeprazole molecule undergoes a sulfoxide to sulfide reduction process over a trivalent vanadium compound. The vanadium oxyhydroxide, at its turn, may be oxidized to a tetravalent state, represented in two forms. The electroanalytical process behavior will be illustrated by a trivariate equation-set, analysis of which confirms the efficiency of the composite of poly (1,2,4-triazole) with VO(OH). Vanadium (III) oxyhydroxide may be efficiently used for omeprazole detection both in pharmaceutical formulations, food, and biological liquids.


2003 ◽  
Vol 18 (supp02) ◽  
pp. 1-40 ◽  
Author(s):  
Sheung Tsun TSOU

In these lectures I shall explain how a new-found nonabelian duality can be used to solve some outstanding questions in particle physics. The first lecture introduces the concept of electromagnetic duality and goes on to present its nonabelian generalization in terms of loop space variables. The second lecture discusses certain puzzles that remain with the Standard Model of particle physics, particularly aimed at nonexperts. The third lecture presents a solution to these problems in the form of the Dualized Standard Model, first proposed by Chan and the author, using nonabelian dual symmetry. The fundamental particles exist in three generations, and if this is a manifestation of dual colour symmetry, which by 't Hooft's theorem is necessarily broken, then we have a natural explanation of the generation puzzle, together with tested and testable consequences not only in particle physics, but also in astrophysics, nuclear and atomic physics. Reported is mainly work done in collaboration with Chan Hong-Mo, and also various parts with Peter Scharbach, Jacqueline Faridani, José Bordes, Jakov Pfaudler, Ricardo Gallego severally.


2004 ◽  
Vol 19 (supp01) ◽  
pp. 167-180 ◽  
Author(s):  
Maurice Goldhaber

Some of my earlier arguments, suggesting modifications of the Standard Model of Particle Physics (see ref. 1), are elaborated and extended. Rules deduced from the known properties of elementary fermions are sharpened and extended in the first part. Conclusions drawn from the rules in the second part are also honed and expanded and an estimate of the neutrino mass eigenstates is added. In the third part, a tentative explanation of the rules is discussed. In my earlier paper, I suggested replacing the point-sources postulated by the Standard Model for each generation by finite 'source-shapes', equal for all elementary fermions of a generation and systematically decreasing in volume from the first to the third generation, thus increasing the effect of self-interactions. According to the rules a correlation exists between the mass of an elementary fermion and the strength of its self-interaction, thus an increase in self-interactions would resolve the problem of the hierarchical masses. A possible connection between the existence of only three generations and the three-dimensionality of space also is discussed. In the epilogue the question is explored whether finite source-shapes for the elementary fermions can be reconciled with fundamental theoretical tenets.


2018 ◽  
Vol 73 (10) ◽  
pp. 923-929 ◽  
Author(s):  
Tejinder P. Singh

AbstractThe Ghirardi-Rimini-Weber theory of spontaneous collapse offers a possible resolution of the quantum measurement problem. In this theory, the wave function of a particle spontaneously and repeatedly localises to one or the other random position in space, as a consequence of the hypothesised quantum jumps. In between jumps, the wave function undergoes the usual Schrödinger evolution. In the present paper, we suggest that these jumps take place in Hilbert space, with no reference to physical space and a physical three-dimensional space arises as a consequence of localisation of macroscopic objects in the universe. That is, collapse of the wave-function is responsible for the origin of space. We then suggest that similar jumps take place for a hypothetical time operator in Hilbert space and classical time, as we know it emerges from localisation of this time operator, for macroscopic objects. More generally, the jumps are suggested to take place in an operator space-time in Hilbert space, leading to an emergent classical space-time.


Sign in / Sign up

Export Citation Format

Share Document