scholarly journals Targeting GPCRs & their Signaling as a Therapeutic Option in Melanoma

Author(s):  
Jeremy H Raymond ◽  
Zackie Aktary ◽  
Lionel Larue ◽  
Véronique Delmas

G protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G proteins, which induce cellular signaling through various pathways. Such signaling modulates essential cellular processes of melanomagenesis, such as proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden treatment options in melanoma in the future.

2021 ◽  
Vol 12 ◽  
Author(s):  
Roberta Lattanzi ◽  
Cinzia Severini ◽  
Daniela Maftei ◽  
Luciano Saso ◽  
Aldo Badiani

The prokineticin (PK) family, prokineticin 1 and Bv8/prokineticin 2 (PROK2), initially discovered as regulators of gastrointestinal motility, interacts with two G protein-coupled receptors, PKR1 and PKR2, regulating important biological functions such as circadian rhythms, metabolism, angiogenesis, neurogenesis, muscle contractility, hematopoiesis, immune response, reproduction and pain perception. PROK2 and PK receptors, in particular PKR2, are widespread distributed in the central nervous system, in both neurons and glial cells. The PROK2 expression levels can be increased by a series of pathological insults, such as hypoxia, reactive oxygen species, beta amyloid and excitotoxic glutamate. This suggests that the PK system, participating in different cellular processes that cause neuronal death, can be a key mediator in neurological/neurodegenerative diseases. While many PROK2/PKRs effects in physiological processes have been documented, their role in neuropathological conditions is not fully clarified, since PROK2 can have a double function in the mechanisms underlying to neurodegeneration or neuroprotection. Here, we briefly outline the latest findings on the modulation of PROK2 and its cognate receptors following different pathological insults, providing information about their opposite neurotoxic and neuroprotective role in different pathological conditions.


Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 883 ◽  
Author(s):  
Santosh K. Singh ◽  
Manoj K. Mishra ◽  
Brian M. Rivers ◽  
Jennifer B. Gordetsky ◽  
Sejong Bae ◽  
...  

Despite the improvement in survival for patients with liver cancer (LCa) in recent decades, only one in five patients survive for 5 years after diagnosis. Thus, there is an urgent need to find new treatment options to improve patient survival. For various cancers, including LCa, the chemokine CCL5 (RANTES) facilitates tumor progression and metastasis. Since the function of the CCR5/CCL5 interaction in LCa cell proliferation and migration is poorly understood, the present study was undertaken to investigate the role of the CCR5/CCL5 axis in these processes. Flow cytometry, RT-PCR, Western blot, and immunofluorescence techniques were used to quantify the expression of CCR5 and CCL5 in LCa cells. To determine the biological significance of CCR5 expressed by LCa cell lines, a tissue microarray of LCas stained for CCR5 and CCL5 was analyzed. The results showed higher expression (p < 0.001) of CCR5 and CCL5 in hepatocellular carcinoma (HCC) tissues compared to non-neoplastic liver tissues. Furthermore, to delineate the role of the CCR5/CCL5 interaction in LCa cell proliferation and migration, various LCa cells were treated with maraviroc, a CCR5 antagonist, in the presence of CCL5. These data demonstrated the biological and clinical significance of the CCR5/CCL5 axis in LCa progression. The targeting of this axis is a promising avenue for the treatment of LCa.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2148 ◽  
Author(s):  
Dominik A. Barth ◽  
Jaroslav Juracek ◽  
Ondrej Slaby ◽  
Martin Pichler ◽  
George A. Calin

Available systemic treatment options for cancers of the genitourinary system have experienced great progress in the last decade. However, a large proportion of patients eventually develop resistance to treatment, resulting in disease progression and shorter overall survival. Biomarkers indicating the increasing resistance to cancer therapies are yet to enter clinical routine. Long non-coding RNAs (lncRNA) are non-protein coding RNA transcripts longer than 200 nucleotides that exert multiple types of regulatory functions of all known cellular processes. Increasing evidence supports the role of lncRNAs in cancer development and progression. Additionally, their involvement in the development of drug resistance across various cancer entities, including genitourinary malignancies, are starting to be discovered. Consequently, lncRNAs have been suggested as factors in novel therapeutic strategies to overcome drug resistance in cancer. In this review, the existing evidences on lncRNAs and their involvement in mechanisms of drug resistance in cancers of the genitourinary system, including renal cell carcinoma, bladder cancer, prostate cancer, and testicular cancer, will be highlighted and discussed to facilitate and encourage further research in this field. We summarize a significant number of lncRNAs with proposed pathways in drug resistance and available reported studies.


2009 ◽  
Vol 206 (2) ◽  
pp. 411-420 ◽  
Author(s):  
Hanna Korhonen ◽  
Beate Fisslthaler ◽  
Alexandra Moers ◽  
Angela Wirth ◽  
Daniel Habermehl ◽  
...  

Anaphylactic shock is a severe allergic reaction involving multiple organs including the bronchial and cardiovascular system. Most anaphylactic mediators, like platelet-activating factor (PAF), histamine, and others, act through G protein–coupled receptors, which are linked to the heterotrimeric G proteins Gq/G11, G12/G13, and Gi. The role of downstream signaling pathways activated by anaphylactic mediators in defined organs during anaphylactic reactions is largely unknown. Using genetic mouse models that allow for the conditional abrogation of Gq/G11- and G12/G13-mediated signaling pathways by inducible Cre/loxP-mediated mutagenesis in endothelial cells (ECs), we show that Gq/G11-mediated signaling in ECs is required for the opening of the endothelial barrier and the stimulation of nitric oxide formation by various inflammatory mediators as well as by local anaphylaxis. The systemic effects of anaphylactic mediators like histamine and PAF, but not of bacterial lipopolysaccharide (LPS), are blunted in mice with endothelial Gαq/Gα11 deficiency. Mice with endothelium-specific Gαq/Gα11 deficiency, but not with Gα12/Gα13 deficiency, are protected against the fatal consequences of passive and active systemic anaphylaxis. This identifies endothelial Gq/G11-mediated signaling as a critical mediator of fatal systemic anaphylaxis and, hence, as a potential new target to prevent or treat anaphylactic reactions.


2011 ◽  
Vol 22 (17) ◽  
pp. 3032-3040 ◽  
Author(s):  
Aichi Msaki ◽  
Ana M. Sánchez ◽  
Li Fang Koh ◽  
Benjamin Barré ◽  
Sonia Rocha ◽  
...  

The NF-κB family of transcription factors is a well-established regulator of the immune and inflammatory responses and also plays a key role in other cellular processes, including cell death, proliferation, and migration. Conserved residues in the trans-activation domain of RelA, which can be posttranslationally modified, regulate divergent NF-κB functions in response to different cellular stimuli. Using rela−/−mouse embryonic fibroblasts reconstituted with RelA, we find that mutation of the threonine 505 (T505) phospho site to alanine has wide-ranging effects on NF-κB function. These include previously described effects on chemotherapeutic drug-induced apoptosis, as well as new roles for this modification in autophagy, cell proliferation, and migration. This last effect was associated with alterations in the actin cytoskeleton and expression of cellular migration–associated genes such as WAVE3 and α-actinin 4. We also define a new component of cisplatin-induced, RelA T505–dependent apoptosis, involving induction of NOXA gene expression, an effect explained at least in part through induction of the p53 homologue, p73. Therefore, in contrast to other RelA phosphorylation events, which positively regulate NF-κB function, we identified RelA T505 phosphorylation as a negative regulator of its ability to induce diverse cellular processes such as apoptosis, autophagy, proliferation, and migration.


2018 ◽  
Vol 33 (12) ◽  
pp. 801-808 ◽  
Author(s):  
Jasna Jancic ◽  
Vesna Djuric ◽  
Boris Hencic ◽  
John N. van den Anker ◽  
Janko Samardzic

Migraine and epilepsy are classified as chronic paroxysmal neurologic disorders sharing many clinical features, as well as possible treatment options. This review highlights the similarities between migraine and epilepsy in pediatrics, focusing on epidemiologic, pathophysiological, genetic, clinical, and pharmacologic aspects. Despite the fact that several syndromes share symptoms of both migraine and epilepsy, further research is needed to clarify the pathophysiological and genetic basis of their comorbidity. Drugs used for prophylactic therapy of migraine and epilepsy have similar pharmacologic properties. The role of epileptic pharmacotherapy in the prophylaxis of migraine is assessed, including the use of conventional antiepileptic drugs, calcium channel blockers, and nonpharmacologic methods such as dietary therapy, supplements, and vagal nerve stimulation. Further randomized, controlled clinical trials assessing pharmacologic and nonpharmacologic methods for the treatment of both disorders are essential, in order to initiate new therapeutic approaches.


Blood ◽  
2003 ◽  
Vol 102 (10) ◽  
pp. 3665-3667 ◽  
Author(s):  
Maria L. Allende ◽  
Tadashi Yamashita ◽  
Richard L. Proia

AbstractSphingosine-1-phosphate (S1P) stimulates signaling pathways via G-protein-coupled receptors and triggers diverse cellular processes, including growth, survival, and migration. In S1P1 receptor-deficient embryos, blood vessels were incompletely covered by vascular smooth muscle cells (VSMCs), indicating the S1P1 receptor regulates vascular maturation. Because S1P1 receptor expression is not restricted to a particular cell type, it was not known whether the S1P1 receptor controlled VSMC coverage of vessels in a cell-autonomous fashion by functioning directly in VSMCs or indirectly through its activity in endothelial cells (ECs). By using the Cre/loxP system, we disrupted the S1P1 gene solely in ECs. The phenotype of the conditional mutant embryos mimicked the one obtained in the embryos globally deficient in S1P1. Thus, vessel coverage by VSMCs is directed by the activity of the S1P1 receptor in ECs. (Blood. 2003;102:3665-3667)


2021 ◽  
Author(s):  
Amada D. Caliz ◽  
Hyung-Jin Yoo ◽  
Anastassiia Vertii ◽  
Cathy Tournier ◽  
Roger J. Davis ◽  
...  

Mitogen kinase kinase 4 (MKK4) and Mitogen kinase kinase 7 (MKK7) are members of the MAP2K family which can activate downstream mitogen-activated protein kinases (MAPKs). MKK4 has been implicated in the activation of both, c-Jun N-terminal Kinase (JNK) and p38 MAPK, whereas MKK7 only activates JNK in response to different stimuli. The stimuli as well as cell type determine the choice of MAP2K member that mediates the response. In a variety of cell types, the MKK7 contributes to the activation of downstream MAPKs, JNK, which is known to regulate essential cellular processes, such as cell death, differentiation, stress response, and cytokine secretion. Previous studies have implicated the role of MKK7 in stress signaling pathways and cytokine production. However, little is known about the degree to which MKK7 and MKK4 contributes to innate immune response in macrophages as well as during inflammation in vivo. To address this question and elucidate the role of MKK7 and MKK4 in macrophage and in vivo, we developed MKK7- and MKK4-deficient mouse models with tamoxifen-inducible Rosa26 CreERT. This study reports that MKK7 is required for JNK activation both in vitro and in vivo. Additionally, we demonstrated that MKK7 in macrophages is necessary for LPS induced cytokine production and migration which appears to be a major contributor to the inflammatory response in vivo. Whereas MKK4 plays a significant but minor role in cytokine production in vivo.


2019 ◽  
Vol 20 (11) ◽  
pp. 2615 ◽  
Author(s):  
Pavan Kumar Puvvula

Long noncoding RNAs (lncRNAs) are a class of transcripts longer than 200 nucleotides with no open reading frame. They play a key role in the regulation of cellular processes such as genome integrity, chromatin organization, gene expression, translation regulation, and signal transduction. Recent studies indicated that lncRNAs are not only dysregulated in different types of diseases but also function as direct effectors or mediators for many pathological symptoms. This review focuses on the current findings of the lncRNAs and their dysregulated signaling pathways in senescence. Different functional mechanisms of lncRNAs and their downstream signaling pathways are integrated to provide a bird’s-eye view of lncRNA networks in senescence. This review not only highlights the role of lncRNAs in cell fate decision but also discusses how several feedback loops are interconnected to execute persistent senescence response. Finally, the significance of lncRNAs in senescence-associated diseases and their therapeutic and diagnostic potentials are highlighted.


Sign in / Sign up

Export Citation Format

Share Document