scholarly journals An Exploration of Pathologies of Multilevel Principal Components Analysis in Statistical Models of Shape

Author(s):  
Damian JJ Farnell

3D facial surface imaging is a useful tool in dentistry and in terms of diagnostics and treatment planning. Between-groups PCA (bgPCA) is a method that has been used to analyse shapes in biological morphometrics, although various “pathologies” of bgPCA have recently been proposed. Monte Carlo (MC) simulated datasets were created here in order to explore “pathologies” of multilevel PCA (mPCA), where mPCA with two levels is equivalent to bgPCA. The first set of MC experiments involved 300 uncorrelated normally distributed variables, whereas the second set of MC experiments used correlated multivariate MC data describing 3D facial shape. We confirmed previous results of other researchers that indicated that bgPCA (and so also mPCA) can give a false impression of strong differences in component scores between groups when there is none in reality. These spurious differences in component scores via mPCA reduced strongly as the sample sizes per group were increased. Eigenvalues via mPCA were also found to be strongly effected by imbalances in sample sizes per group, although this problem was removed by using weighted forms of covariance matrices suggested by the maximum likelihood solution of the two-level model. However, this did not solve problems of spurious differences between groups in these simulations, which was driven by very small sample sizes in one group here. As a “rule of thumb” only, all of our experiments indicate that reasonable results are obtained when sample sizes per group in all groups are at least equal to the number of variables. Interestingly, the sum of all eigenvalues over both levels via mPCA scaled approximately linearly with the inverse of the sample size per group in all experiments. Finally, between-group variation was added explicitly to the MC data generation model in two experiments considered here. Results for the sum of all eigenvalues via mPCA predicted the asymptotic amount for the total amount of variance correctly in this case, whereas standard “single-level” PCA underestimated this quantity.

2019 ◽  
Author(s):  
Andrea Cardini ◽  
Paul O’Higgins ◽  
F. James Rohlf

AbstractUsing sampling experiments, we found that, when there are fewer groups than variables, between-groups PCA (bgPCA) may suggest surprisingly distinct differences among groups for data in which none exist. While apparently not noticed before, the reasons for this problem are easy to understand. A bgPCA captures the g-1 dimensions of variation among the g group means, but only a fraction of the ∑ni − g dimensions of within-group variation (ni are the sample sizes), when the number of variables, p, is greater than g-1. This introduces a distortion in the appearance of the bgPCA plots because the within-group variation will be underrepresented, unless the variables are sufficiently correlated so that the total variation can be accounted for with just g-1 dimensions. The effect is most obvious when sample sizes are small relative to the number of variables, because smaller samples spread out less, but the distortion is present even for large samples. Strong covariance among variables largely reduces the magnitude of the problem, because it effectively reduces the dimensionality of the data and thus enables a larger proportion of the within-group variation to be accounted for within the g-1-dimensional space of a bgPCA. The distortion will still be relevant though its strength will vary from case to case depending on the structure of the data (p, g, covariances etc.). These are important problems for a method mainly designed for the analysis of variation among groups when there are very large numbers of variables and relatively small samples. In such cases, users are likely to conclude that the groups they are comparing are much more distinct than they really are. Having many variables but just small sample sizes is a common problem in fields ranging from morphometrics (as in our examples) to molecular analyses.


2018 ◽  
Author(s):  
Christopher Chabris ◽  
Patrick Ryan Heck ◽  
Jaclyn Mandart ◽  
Daniel Jacob Benjamin ◽  
Daniel J. Simons

Williams and Bargh (2008) reported that holding a hot cup of coffee caused participants to judge a person’s personality as warmer, and that holding a therapeutic heat pad caused participants to choose rewards for other people rather than for themselves. These experiments featured large effects (r = .28 and .31), small sample sizes (41 and 53 participants), and barely statistically significant results. We attempted to replicate both experiments in field settings with more than triple the sample sizes (128 and 177) and double-blind procedures, but found near-zero effects (r = –.03 and .02). In both cases, Bayesian analyses suggest there is substantially more evidence for the null hypothesis of no effect than for the original physical warmth priming hypothesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Florent Le Borgne ◽  
Arthur Chatton ◽  
Maxime Léger ◽  
Rémi Lenain ◽  
Yohann Foucher

AbstractIn clinical research, there is a growing interest in the use of propensity score-based methods to estimate causal effects. G-computation is an alternative because of its high statistical power. Machine learning is also increasingly used because of its possible robustness to model misspecification. In this paper, we aimed to propose an approach that combines machine learning and G-computation when both the outcome and the exposure status are binary and is able to deal with small samples. We evaluated the performances of several methods, including penalized logistic regressions, a neural network, a support vector machine, boosted classification and regression trees, and a super learner through simulations. We proposed six different scenarios characterised by various sample sizes, numbers of covariates and relationships between covariates, exposure statuses, and outcomes. We have also illustrated the application of these methods, in which they were used to estimate the efficacy of barbiturates prescribed during the first 24 h of an episode of intracranial hypertension. In the context of GC, for estimating the individual outcome probabilities in two counterfactual worlds, we reported that the super learner tended to outperform the other approaches in terms of both bias and variance, especially for small sample sizes. The support vector machine performed well, but its mean bias was slightly higher than that of the super learner. In the investigated scenarios, G-computation associated with the super learner was a performant method for drawing causal inferences, even from small sample sizes.


2013 ◽  
Vol 113 (1) ◽  
pp. 221-224 ◽  
Author(s):  
David R. Johnson ◽  
Lauren K. Bachan

In a recent article, Regan, Lakhanpal, and Anguiano (2012) highlighted the lack of evidence for different relationship outcomes between arranged and love-based marriages. Yet the sample size ( n = 58) used in the study is insufficient for making such inferences. This reply discusses and demonstrates how small sample sizes reduce the utility of this research.


2016 ◽  
Vol 41 (5) ◽  
pp. 472-505 ◽  
Author(s):  
Elizabeth Tipton ◽  
Kelly Hallberg ◽  
Larry V. Hedges ◽  
Wendy Chan

Background: Policy makers and researchers are frequently interested in understanding how effective a particular intervention may be for a specific population. One approach is to assess the degree of similarity between the sample in an experiment and the population. Another approach is to combine information from the experiment and the population to estimate the population average treatment effect (PATE). Method: Several methods for assessing the similarity between a sample and population currently exist as well as methods estimating the PATE. In this article, we investigate properties of six of these methods and statistics in the small sample sizes common in education research (i.e., 10–70 sites), evaluating the utility of rules of thumb developed from observational studies in the generalization case. Result: In small random samples, large differences between the sample and population can arise simply by chance and many of the statistics commonly used in generalization are a function of both sample size and the number of covariates being compared. The rules of thumb developed in observational studies (which are commonly applied in generalization) are much too conservative given the small sample sizes found in generalization. Conclusion: This article implies that sharp inferences to large populations from small experiments are difficult even with probability sampling. Features of random samples should be kept in mind when evaluating the extent to which results from experiments conducted on nonrandom samples might generalize.


2018 ◽  
Vol 15 ◽  
pp. 1-5 ◽  
Author(s):  
M.G.M. Kok ◽  
M.W.J. de Ronde ◽  
P.D. Moerland ◽  
J.M. Ruijter ◽  
E.E. Creemers ◽  
...  

PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0197910 ◽  
Author(s):  
Alexander Kirpich ◽  
Elizabeth A. Ainsworth ◽  
Jessica M. Wedow ◽  
Jeremy R. B. Newman ◽  
George Michailidis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document