scholarly journals Pairing Effect pada Isotop Cr dengan Menggunakan Uniform Fixed Potential Interaction

Author(s):  
Alpi Mahisha Nugraha ◽  
Nurullaeli Nurullaeli

<p class="AbstrakIndonesia"><strong><em>Abstract:</em></strong><em> </em>Pairing is collective phenomenon caused by fermions as neutron and proton collected in nuclei, this phenomenon can be found in the formation of isotopes such as the Cr-isotopes. Pairing has an impact on the amount of nuclear binding energy. Like as social being uniquely, fermions will have a strong relationship when collected in nuclei isotopes. Their binding energy will increase when the nuclei have a paired of even-even number neutron or proton. One of the most powerful approaches in explaining the pairing effect is the Bardeen-Cooper-Srhrieffer approximation (BCS-Approximation), which is forms the basis of the theory superfluidity phenomenon in nucleiIn BCS-Approximation requires an interaction potential matrix that describes the neutron interactions between energy levels. We used uniform fixed potential energy 0.5 MeV, 0.1 MeV, and 0.01 MeV which is will be an option in this approach to calculate the total binding energy in Cr-isotopes.</p><p class="AbstrakIndonesia"><strong>Abstrak:</strong> Pairing merupakan fenomena keloktif dari beberapa fermion yang berkumpul, fenomena ini dapat ditemukan pada pembentukan isotop seperti isotop Cr. Pairing atau pasangan akan berdampak pada besar energi ikat inti atom, seperti halnya makhluk sosial yang akan meemliki hubungan yang kuat ketika berkumpul, isotop suatu nuklida juga akan mengalami peningkatan energi ikat ketika jumlah partikel semakin banyak dan berjumlah genap atau berpasangan. Salah satu pendekatan yang sangat powerfull dalam menjelaskan pairing effect tersebut adalah pedekatan Bardeen, Cooper, dan Schrieffer yang dikenal dengan BCS Approximation, yang menjadi dasar teori dari fenomena superfluidity. Penggunaan pendekatan ini memerlukan matriks potensial interaksi yang menggambarkan interaksi neutron antar level energi, penggunaan Uniform Fixed Potential Interaction yang bernilai 0.5 MeV, 0.1 MeV, dan 0.01 MeV menjadi salah satu pilihan dalam pendekatan ini untuk menghitung energi ikat total inti isotop Cr.</p>

2019 ◽  
Vol 118 (2) ◽  
pp. e1597199
Author(s):  
Lulu Zhang ◽  
Daguang Yue ◽  
Juan Zhao ◽  
Yuzhi Song ◽  
Qingtian Meng

2020 ◽  
Author(s):  
CAIO FIRME

<p>In previous work, we developed the local potential energy model, LPE, based on the electrostatic force and QTAIM topological data to quantify classical hydrogen bond energies. In this work, we extended the investigation to other inter/intramolecular interactions (non-conventional hydrogen bonds and others). The LPE presented high precision and linearity with supramolecular binding energy, when excluding interactions of an ion with π-bonded groups or polar molecule. The energy decomposition analysis from SAPT-DFT and LMOEDA showed that dispersion and electrostatic components are important to LPE, while polarization component impairs it. The LPE cannot be used for complexes with predominant polarization component. </p>


1972 ◽  
Vol 25 (6) ◽  
pp. 651
Author(s):  
HN Comins ◽  
RGL Hewitt

Elements of the shell-model reaction matrix have been calculated for the p-f shell with an exact treatment of the Pauli operator. These elements have been used in straightforward calculations of the energy levels of 42Ca and 42Sc and the binding energy of 40Ca.


Author(s):  
Karl Irikura

When computing the potential-energy curve of a diatomic molecule for predictive spectroscopy, high-level calculations are usually desired. The best calculations are expensive, so few points are usually available. The points are fitted to a continuous function, such as a polynomial. Ro-vibrational energy levels are then computed using the fitted function, and spectroscopic constants extracted. However, there may be problems with overfitting, with inadequate flexibility of the fitting function, or with dependence of results upon the choice of fitting function. More fundamentally, the fitting function is selected using aesthetics or convenience, instead of physics. Here we suggest using a lower-level, high-resolution ab initio potential as a guide. Instead of fitting the sparse, high-level data directly, the energy differences between the high-level points and the guiding potential are fitted. The results are improved even with an inexpensive guiding potential. This simple strategy involves little additional effort and can be recommended for routine use. It is similar to some interpolation strategies in the literature of polyatomic molecules. When the guiding potential extends beyond the high-level data, extrapolations are also improved.


1960 ◽  
Vol 120 (3) ◽  
pp. 969-976 ◽  
Author(s):  
Leonard S. Rodberg ◽  
Vigdor L. Teplitz

Sign in / Sign up

Export Citation Format

Share Document