scholarly journals Corrosion of pipe steels under alternating currents

2021 ◽  
pp. ArticleID:211245
Author(s):  
Ajit Kumar Thakur ◽  
Keyword(s):  
2016 ◽  
Vol 25 (8) ◽  
pp. 3546-3547
Author(s):  
Jidong Kang ◽  
Wenyue Zheng ◽  
Darren Bibby ◽  
Babak Shalchi Amirkhiz ◽  
Jian Li

Author(s):  
J. M. Gray ◽  
S. V. Subramanian

A quantitative understanding of hierarchical evolution of microstructure is essential in order to design the base chemistry and optimize rolling schedules to obtain the morphological microstructure coupled with high density and dispersion of crystallographic high angle boundaries to achieve the target strength and fracture properties in higher grade line pipe steels, microalloyed with niobium. Product-process integration has been the key concept underlying the development of niobium microalloyed line pipe steel technology over the years. The development of HTP technology based on 0.1 wt % Nb and low interstitial was predicated by advances in process metallurgy to control interstitial elements to low levels (C <0.03wt% and N< 0.003wt%), sulfur to ultra-low levels (S<20ppm), as well as in product metallurgy based on advances in basic science aspects of thermo-mechanical rolling and phase transformation of pancaked austenite under accelerated cooling conditions, and toughness properties of heat affected zones in welding of niobium microalloyed line pipes. A historical perspective/technological overview of evolution of HTP for line pipe applications is the focus of this paper in order to highlight the key metallurgical concepts underlying Nb microalloying technology which have paved the way for successful development of higher grade line pipe steels over the years.


1963 ◽  
Vol 15 (04) ◽  
pp. 370-374
Author(s):  
J.W. Squire
Keyword(s):  

2016 ◽  
Vol 662 ◽  
pp. 481-491 ◽  
Author(s):  
Nazmul Huda ◽  
Abdelbaset R.H. Midawi ◽  
James Gianetto ◽  
Robert Lazor ◽  
Adrian P. Gerlich

2021 ◽  
Vol 2021 (7) ◽  
pp. 864-873
Author(s):  
A. Yu. Em ◽  
O. A. Komolova ◽  
A. M. Pogodin ◽  
K. V. Grigorovich

2021 ◽  
Vol 316 ◽  
pp. 369-374
Author(s):  
Aleksey N. Shapovalov ◽  
Roman R. Dema ◽  
Sergey P. Nefed'ev

The article presents the test results of complex microcrystalline modifiers containing calcium, barium, strontium, rare earth metals. Complex modifiers were used in the processing of steel for 17G1S-U pipes in order to reduce its contamination with non-metallic inclusions, including corrosive ones. The use of modifiers allowed to reduce metal contamination by non-metallic inclusions of all kinds. The most experimental non-metallic inclusions were obtained during metal processing with INSTEEL®5.1 and INSTEEL®9.4 modifiers. In addition, the use of experienced modifiers ensured the production of complex oxysulfides of calcium, cerium and lanthanum with low oxygen content and thermal expansion coefficients, which increases the corrosion resistance of steel.


2018 ◽  
Vol 145 ◽  
pp. 05003
Author(s):  
Anna Povolotskaya ◽  
Eduard Gorkunov ◽  
Sergey Zadvorkin ◽  
Igor Veselov

The paper reports results of magnetic measurements made on samples of the 12GB pipe steel (strength group X42SS) designed for producing pipes to be used in media with high hydrogen sulphide content, both in the initial state and after exposure to hydrogen sulphide, for 96, 192 and 384 hours under uniaxial elastic-plastic tension. At the stage of elastic deformation there is a unique correlation between the coercive force measured on a minor hysteresis loop in weak fields and tensile stress, which enables this parameter to be used for the evaluation of elastic stresses in pipes made of the 12 GB pipe steel under different conditions, including a hydrogen sulphide containing medium. The effect of the value of preliminary plastic strain, viewed as the initial stress-strain state, on the magnetic behaviour of X70 pipe steels under elastic tension and compression is studied. Plastic strain history affects the magnetic behaviour of the material during subsequent elastic deformation since plastic strain induces various residual stresses, and this necessitates taking into account the initial stress-strain state of products when developing magnetic techniques for the determination of their stress-strain parameters during operation.


Sign in / Sign up

Export Citation Format

Share Document