scholarly journals THE USE OF ARTIFICIAL INTELLIGENCE METHODS FOR APPROXIMATION OF THE MECHANICAL BEHAVIOR OF RUBBER-LIKE MATERIALS

Author(s):  
Oleksii Vodka ◽  
Serhii Pohrebniak

In the XXI century, neural networks are widely used in various fields, including computer simulation and mechanics. This popularity is due to the factthat they give high precision, work fast and have a very wide range of settings. The purpose of creating a software product using elements of artificialintelligence, for interpolation and approximation of experimental data. The software should work correctly, and yield results with minimal error. Thedisadvantage of using mathematical approaches to calculating and predicting hysteresis loops is that they describe unloading rather poorly, thus, weobtain incorrect data for calculating the stress-strain state of a structure. The solution tool use of elements of artificial intelligence, but rather neuralnetworks of direct distribution. The neural network of direct distribution has been built and trained in this work. It has been trained with a teacher (ateacher using the method of reverse error propagation) based on a learning sample of a pre-experiment. Several networks of different structures werebuilt for testing, which received the same dataset that was not used during the training, but was known from the experiment, thus finding a networkerror in the amount of allocated energy and in the mean square deviation. The article describes in detail the mathematical interpretation of neuralnetworks, the method for training them, the previously conducted experiment, structure of network that was used and its topology, the training method,preparation of the training sample, and the test sample. As a result of the robots carried out, the software was tested in which an artificial neuralnetwork was used, several types of neural networks with different input data and internal structures were built and tested, the error of their work wasdetermined, the positive and negative sides of the networks that were used were formed.

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 854
Author(s):  
Nevena Rankovic ◽  
Dragica Rankovic ◽  
Mirjana Ivanovic ◽  
Ljubomir Lazic

Software estimation involves meeting a huge number of different requirements, such as resource allocation, cost estimation, effort estimation, time estimation, and the changing demands of software product customers. Numerous estimation models try to solve these problems. In our experiment, a clustering method of input values to mitigate the heterogeneous nature of selected projects was used. Additionally, homogeneity of the data was achieved with the fuzzification method, and we proposed two different activation functions inside a hidden layer, during the construction of artificial neural networks (ANNs). In this research, we present an experiment that uses two different architectures of ANNs, based on Taguchi’s orthogonal vector plans, to satisfy the set conditions, with additional methods and criteria for validation of the proposed model, in this approach. The aim of this paper is the comparative analysis of the obtained results of mean magnitude relative error (MMRE) values. At the same time, our goal is also to find a relatively simple architecture that minimizes the error value while covering a wide range of different software projects. For this purpose, six different datasets are divided into four chosen clusters. The obtained results show that the estimation of diverse projects by dividing them into clusters can contribute to an efficient, reliable, and accurate software product assessment. The contribution of this paper is in the discovered solution that enables the execution of a small number of iterations, which reduces the execution time and achieves the minimum error.


The objective of this undertaking is to apply neural systems to phishing email recognition and assess the adequacy of this methodology. We structure the list of capabilities, process the phishing dataset, and execute the Neural Network frameworks. we analyze its exhibition against that of other real Artificial Intelligence Techniques – DT , K-nearest , NB and SVM machine.. The equivalent dataset and list of capabilities are utilized in the correlation. From the factual examination, we infer that Neural Networks with a proper number of concealed units can accomplish acceptable precision notwithstanding when the preparation models are rare. Additionally, our element determination is compelling in catching the qualities of phishing messages, as most AI calculations can yield sensible outcomes with it.


1995 ◽  
Vol 17 (1) ◽  
pp. 1-15 ◽  
Author(s):  
John F. Place ◽  
Alain Truchaud ◽  
Kyoichi Ozawa ◽  
Harry Pardue ◽  
Paul Schnipelsky

The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks.This paper considers the role of software in system operation, control and automation, and attempts to define intelligence. AI is characterized by its ability to deal with incomplete and imprecise information and to accumulate knowledge. Expert systems, building on standard computing techniques, depend heavily on the domain experts and knowledge engineers that have programmed them to represent the real world. Neural networks are intended to emulate the pattern-recognition and parallel processing capabilities of the human brain and are taught rather than programmed. The future may lie in a combination of the recognition ability of the neural network and the rationalization capability of the expert system.In the second part of the paper, examples are given of applications of AI in stand-alone systems for knowledge engineering and medical diagnosis and in embedded systems for failure detection, image analysis, user interfacing, natural language processing, robotics and machine learning, as related to clinical laboratories.It is concluded that AI constitutes a collective form of intellectual propery, and that there is a need for better documentation, evaluation and regulation of the systems already being used in clinical laboratories.


In this paper, we propose a method to utilize machine learning to automate the system of classifying and transporting large quantities of logistics. First, establish an environment similar to the task of transferring logistics to the desired destination, and set up basic rules for classification and transfer. Next, each of the logistics that need sorting and transportation is defined as one entity, and artificial intelligence is introduced so that each individual can go to an optimal route without collision between the objects to the destination. Artificial intelligence technology uses artificial neural networks and uses genetic algorithms to learn neural networks. The artificial neural network is generated by each chromosome, and it is evolved based on the most suitable artificial neural network, and a score is given to each operation to evaluate the fitness of the neural network. In conclusion, the validity of this algorithm is evaluated through the simulation of the implemented system.


Author(s):  
Siranush Sargsyan ◽  
Anna Hovakimyan

The study and application of neural networks is one of the main areas in the field of artificial intelligence. The effectiveness of the neural network depends significantly on both its architecture and the structure of the training set. This paper proposes a probabilistic approach to evaluate the effectiveness of the neural network if the images intersect in the receptor field. A theorem and its corollaries are proved, which are consistent with the results obtained by a different path for a perceptron-type neural network.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 497
Author(s):  
Sebastian Kujawa ◽  
Gniewko Niedbała

Artificial neural networks are one of the most important elements of machine learning and artificial intelligence. They are inspired by the human brain structure and function as if they are based on interconnected nodes in which simple processing operations take place. The spectrum of neural networks application is very wide, and it also includes agriculture. Artificial neural networks are increasingly used by food producers at every stage of agricultural production and in efficient farm management. Examples of their applications include: forecasting of production effects in agriculture on the basis of a wide range of independent variables, verification of diseases and pests, intelligent weed control, and classification of the quality of harvested crops. Artificial intelligence methods support decision-making systems in agriculture, help optimize storage and transport processes, and make it possible to predict the costs incurred depending on the chosen direction of management. The inclusion of machine learning methods in the “life cycle of a farm” requires handling large amounts of data collected during the entire growing season and having the appropriate software. Currently, the visible development of precision farming and digital agriculture is causing more and more farms to turn to tools based on artificial intelligence. The purpose of this Special Issue was to publish high-quality research and review papers that cover the application of various types of artificial neural networks in solving relevant tasks and problems of widely defined agriculture.


2018 ◽  
Vol 9 (1) ◽  
pp. 51 ◽  
Author(s):  
Arianna Baldinelli ◽  
Linda Barelli ◽  
Gianni Bidini ◽  
Fabio Bonucci ◽  
Feride Iskenderoğlu

Because of their fuel flexibility, Solid Oxide Fuel Cells (SOFCs) are promising candidates to coach the energy transition. Yet, SOFC performance are markedly affected by fuel composition and operative parameters. In order to optimize SOFC operation and to provide a prompt regulation, reliable performance simulation tools are required. Given the high variability ascribed to the fuel in the wide range of SOFC applications and the high non-linearity of electrochemical systems, the implementation of artificial intelligence techniques, like Artificial Neural Networks (ANNs), is sound. In this paper, several network architectures based on a feedforward-backpropagation algorithm are proposed and trained on experimental data-set issued from tests on commercial NiYSZ/8YSZ/LSCF anode supported planar button cells. The best simulator obtained is a 3-hidden layer ANN (25/22/18 neurons per layer, hyperbolic tangent sigmoid as transfer function, obtained with a gradient descent with adaptive learning rate backpropagation). This shows high accuracy (RMS = 0.67% in the testing phase) and successful application in the forecast of SOFC polarization behaviour in two additional experiments (RMS in the order of 3% is scored, yet it is reduced to about 2% if only the typical operating current density range of real application is considered, from 300 to 500 mA·cm−2). Therefore, the neural tool is suitable for system simulation codes/software whether SOFC operating parameters agree with the input ranges (anode feeding composition 0–48%vol H2, 0–38%vol CO, 0–45%vol CH4, 9–32%vol CO2, 0–54%vol N2, specific equivalent hydrogen flow-rate per unit cell active area 10.8–23.6 mL·min−1·cm−2, current density 0–1300 mA·cm−2 and temperature 700–800 °C).


2019 ◽  
Vol 8 (6) ◽  
Author(s):  
Ilyas I. Ismagilov ◽  
Linar A. Molotov ◽  
Alexey S. Katasev ◽  
Dina V. Kataseva

This article solves the problem of constructing and evaluating a neural network model to determine the creditworthiness of individuals. It is noted that the most important part of the modern retail market is consumer lending. Therefore, an adequate and high-quality assessment of the creditworthiness of an individual is a key aspect of providing credit to a potential borrower. The theoretical and practical aspects of assessing the creditworthiness of individuals are considered. To solve this problem, the need for the use of intelligent modeling technologies based on neural networks is being updated. The construction of a neural network model required the receipt of initial data on borrowers. Using correlation analysis, 14 input parameters were selected that most significantly affect the output. The training and test data samples were generated to build and evaluate the adequacy of the neural network model. Training and testing of the neural network model was carried out on the basis of the analytical platform “Deductor”. Analysis of contingency tables to assess the accuracy of the neural network model in the training and test samples showed positive results. The error of the first kind on the data from the training sample was 0.45%, and the error of the second kind was 1.39%. Accordingly, the error of the first kind was not observed on the data from the test sample, and the error of the second kind was 2.68%. The results obtained indicate a high generalizing ability and adequacy of the constructed neural network, as well as the possibility of its effective practical use as part of intelligent decision support systems for granting loans to potential borrowers


Author(s):  
Pavel P. Alekseev ◽  
Irina Kvyatkovskaya

The article discusses the issue of using artificial neural networks for recognizing the conditionally graphical designations of electrical engineering, in particular, the convolutional neural networks and the R-CNN object recognition model, which is most suitable for solving the task at hand. Recognition of images of a specific picture is a task set for the complex information processing systems, as well as control and decision-making systems. The classification of various technological or natural objects, analog and digital signals is developed by a set of specific characteristics and properties. Defining the type and features of an object finds its application in different branches of science: machine learning, diagnostics, meteorology, video surveillance and security systems, in virtual reality systems and image search. However, research has not yet been carried out for solving the applied problems and achieving the required parameters (e.g. in recognizing conditional graphical symbols of electrical engineering). The neural networks have been found to have the highest quality and most promising among all mathematical models and methods of pattern recognition. As for the interactivity, the output result of image recognition work is a necessary and sufficient answer, which does not have a stable work on the variability of objects within categories and their invariant transformations. The scheme of the model R-CNN has been studied in detail, the importance of the training sample and its influence on the quality of pattern recognition by the neural network have been grounded. The application of the RoI Pooling method for object recognition in the image is shown in general, due to which there have been selected several regions of interest indicated through the bounding boxes.


2021 ◽  
Vol 162 (9) ◽  
pp. 352-360
Author(s):  
Péter Szoldán ◽  
Zsófia Egyed ◽  
Endre Szabó ◽  
János Somogyi ◽  
György Hangody ◽  
...  

Összefoglaló. Bevezetés: A térdízületnek ultrafriss osteochondralis allograft segítségével történő részleges ortopédiai rekonstrukciója képalkotó vizsgálatokon alapuló pontos tervezést igényel, mely folyamatban a morfológia felismerésére képes mesterséges intelligencia nagy segítséget jelenthet. Célkitűzés: Jelen kutatásunk célja a porc morfológiájának MR-felvételen történő felismerésére alkalmas mesterséges intelligencia kifejlesztése volt. Módszer: A feladatra legalkalmasabb MR-szekvencia meghatározása és 180 térd-MR-felvétel elkészítése után a mesterséges intelligencia tanításához manuálisan és félautomata szegmentálási módszerrel bejelölt porckontúrokkal tréninghalmazt hoztunk létre. A mély convolutiós neuralis hálózaton alapuló mesterséges intelligenciát ezekkel az adatokkal tanítottuk be. Eredmények: Munkánk eredménye, hogy a mesterséges intelligencia képes a meghatározott szekvenciájú MR-felvételen a porcnak a műtéti tervezéshez szükséges pontosságú bejelölésére, mely az első lépés a gép által végzett műtéti tervezés felé. Következtetés: A választott technológia – a mesterséges intelligencia – alkalmasnak tűnik a porc geometriájával kapcsolatos feladatok megoldására, ami széles körű alkalmazási lehetőséget teremt az ízületi terápiában. Orv Hetil. 2021; 162(9): 352–360. Summary. Introduction: The partial orthopedic reconstruction of the knee joint with an osteochondral allograft requires precise planning based on medical imaging reliant; an artificial intelligence capable of determining the morphology of the cartilage tissue can be of great help in such a planning. Objective: We aimed to develop and train an artificial intelligence capable of determining the cartilage morphology in a knee joint based on an MR image. Method: After having determined the most appropriate MR sequence to use for this project and having acquired 180 knee MR images, we created the training set for the artificial intelligence by manually and semi-automatically segmenting the contours of the cartilage in the images. We then trained the neural network with this dataset. Results: As a result of our work, the artificial intelligence is capable to determine the morphology of the cartilage tissue in the MR image to a level of accuracy that is sufficient for surgery planning, therefore we have made the first step towards machine-planned surgeries. Conclusion: The selected technology – artificial intelligence – seems capable of solving tasks related to cartilage geometry, creating a wide range of application opportunities in joint therapy. Orv Hetil. 2021; 162(9): 352–360.


Sign in / Sign up

Export Citation Format

Share Document