scholarly journals Partial differentiation of air density in mass metrology

ACTA IMEKO ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 33
Author(s):  
M. L. Win ◽  
T. Sanponpute ◽  
B. Suktat

There are four major uncertainty components to be considered when performing mass comparisons. They are uncertainties of weighing process, reference weight used, air buoyancy, and mass comparator. The systematic effect of air buoyancy can be greatly reduced if the air density and the densities of the test and reference weights are known. This paper will emphasis on the uncertainty due to air buoyancy correction only. To calculate the uncertainty of air density correction, partial derivatives of temperature, barometric pressure and humidity must be performed. In this paper, two methods for partial differentiation of air density components are discussed.

Author(s):  
Nitin Arora ◽  
Ryan P. Russell ◽  
Nathan J. Strange

1968 ◽  
Vol 5 (2) ◽  
pp. 401-413 ◽  
Author(s):  
Paul J. Schweitzer

A perturbation formalism is presented which shows how the stationary distribution and fundamental matrix of a Markov chain containing a single irreducible set of states change as the transition probabilities vary. Expressions are given for the partial derivatives of the stationary distribution and fundamental matrix with respect to the transition probabilities. Semi-group properties of the generators of transformations from one Markov chain to another are investigated. It is shown that a perturbation formalism exists in the multiple subchain case if and only if the change in the transition probabilities does not alter the number of, or intermix the various subchains. The formalism is presented when this condition is satisfied.


2020 ◽  
Vol 8 (2) ◽  
pp. 24-39
Author(s):  
V. Gorodetskiy ◽  
R. Kolisnyk ◽  
O. Martynyuk

Spaces of $S$ type, introduced by I.Gelfand and G.Shilov, as well as spaces of type $S'$, topologically conjugate with them, are natural sets of the initial data of the Cauchy problem for broad classes of equations with partial derivatives of finite and infinite orders, in which the solutions are integer functions over spatial variables. Functions from spaces of $S$ type on the real axis together with all their derivatives at $|x|\to \infty$ decrease faster than $\exp\{-a|x|^{1/\alpha}\}$, $\alpha > 0$, $a > 0$, $x\in \mathbb{R}$. The paper investigates a nonlocal multipoint by time problem for equations with partial derivatives of parabolic type in the case when the initial condition is given in a certain space of generalized functions of the ultradistribution type ($S'$ type). Moreover, results close to the Cauchy problem known in theory for such equations with an initial condition in the corresponding spaces of generalized functions of $S'$ type were obtained. The properties of the fundamental solution of a nonlocal multipoint by time problem are investigated, the correct solvability of the problem is proved, the image of the solution in the form of a convolution of the fundamental solution with the initial generalized function, which is an element of the space of generalized functions of $S'$ type.


Author(s):  
J-S Zhao ◽  
F Chu ◽  
Z-J Feng

The current paper proposes a unified analytical methodology to identify the principal screws of two- and three-screw systems. Based on the definition of the pitch of a screw, it first obtains an identical homogeneous quadric equation. According to functional analysis theory, it is known that the partial derivatives of an identical quadric equation with respect to its variables must be zero. Therefore, the paper deduces a set of linear homogeneous equations that are made up of the partial derivatives of the quadric equation. With the existing criteria of non-zero solutions for homogeneous linear algebra equations, it ultimately obtains the formulas of the principal pitches and the associated principal screws of the system. The most outstanding contribution of this methodology is that it proposes a unified analytical approach to identify the principal pitches and the principal coordinate systems of the second-order and the third-order screw systems. This should be a new contribution to the screw theory and will boost its applications to the kinematics analysis of robots and spatial mechanisms.


1988 ◽  
Vol 31 (2) ◽  
pp. 159-167 ◽  
Author(s):  
R. A. Adams

AbstractThe Sobolev inequality of order m asserts that if p ≧ 1, mp < n and 1/q = 1/p — m/n, then the Lq-norm of a smooth function with compact support in Rn is bounded by a constant times the sum of the Lp-norms of the partial derivatives of order m of that function. In this paper we show that that sum may be reduced to include only the completely mixed partial derivatives or order m, and in some circumstances even fewer partial derivatives.


Sign in / Sign up

Export Citation Format

Share Document