scholarly journals Digital fundus image quality assessment

Author(s):  
V. V. Starovoitov ◽  
Y. I. Golub ◽  
M. M. Lukashevich

Diabetic retinopathy (DR) is a disease caused by complications of diabetes. It starts asymptomatically and can end in blindness. To detect it, doctors use special fundus cameras that allow them to register images of the retina in the visible range of the spectrum. On these images one can see features, which determine the presence of DR and its grade. Researchers around the world are developing systems for the automated analysis of fundus images. At present, the level of accuracy of classification of diseases caused by DR by systems based on machine learning is comparable to the level of qualified medical doctors.The article shows variants for representation of the retina in digital images by different cameras. We define the task to develop a universal approach for the image quality assessment of a retinal image obtained by an arbitrary fundus camera. It is solved in the first block of any automated retinal image analysis system. The quality assessment procedure is carried out in several stages. At the first stage, it is necessary to perform binarization of the original image and build a retinal mask. Such a mask is individual for each image, even among the images recorded by one camera. For this, a new universal retinal image binarization algorithm is proposed. By analyzing result of the binarization, it is possible to identify and remove imagesoutliers, which show not the retina, but other objects. Further, the problem of no-reference image quality assessment is solved and images are classified into two classes: satisfactory and unsatisfactory for analysis. Contrast, sharpness and possibility of segmentation of the vascular system on the retinal image are evaluated step by step. It is shown that the problem of no-reference image quality assessment of an arbitrary fundus image can be solved.Experiments were performed on a variety of images from the available retinal image databases.

2020 ◽  
Vol 64 (1) ◽  
pp. 10505-1-10505-16
Author(s):  
Yin Zhang ◽  
Xuehan Bai ◽  
Junhua Yan ◽  
Yongqi Xiao ◽  
C. R. Chatwin ◽  
...  

Abstract A new blind image quality assessment method called No-Reference Image Quality Assessment Based on Multi-Order Gradients Statistics is proposed, which is aimed at solving the problem that the existing no-reference image quality assessment methods cannot determine the type of image distortion and that the quality evaluation has poor robustness for different types of distortion. In this article, an 18-dimensional image feature vector is constructed from gradient magnitude features, relative gradient orientation features, and relative gradient magnitude features over two scales and three orders on the basis of the relationship between multi-order gradient statistics and the type and degree of image distortion. The feature matrix and distortion types of known distorted images are used to train an AdaBoost_BP neural network to determine the image distortion type; the feature matrix and subjective scores of known distorted images are used to train an AdaBoost_BP neural network to determine the image distortion degree. A series of comparative experiments were carried out using Laboratory of Image and Video Engineering (LIVE), LIVE Multiply Distorted Image Quality, Tampere Image, and Optics Remote Sensing Image databases. Experimental results show that the proposed method has high distortion type judgment accuracy and that the quality score shows good subjective consistency and robustness for all types of distortion. The performance of the proposed method is not constricted to a particular database, and the proposed method has high operational efficiency.


Sign in / Sign up

Export Citation Format

Share Document