Rotary-Steerable Tool Brings Cost-Effective Performance to High-Volume Drilling

2014 ◽  
Vol 66 (12) ◽  
pp. 111-113 ◽  
Author(s):  
Chris Carpenter
2001 ◽  
Vol 227-228 ◽  
pp. 143-149
Author(s):  
Larry Leung ◽  
Damian Davison ◽  
Arthur Cornfeld ◽  
Frederick Towner ◽  
Dave Hartzell

2020 ◽  
Vol 177 ◽  
pp. 03004
Author(s):  
Vladimir Makarov ◽  
Nikolai Makarov ◽  
Alexandr Lifanov ◽  
Artem Materov ◽  
Nikolay Kosarev

Competitive growth of enterprises in the mining and oil and gas industries of the Russian economy, combined with industrial safety requirements, updates the task of developing the design and production methodology for the aerodynamically adaptive turbomachines with a nature-like dominance. Such machines adequately and economically soundly establish the necessary parameters of the air environment in the technological space that implement the concept of optimal subsurface management ecotechnology. This article proposes a production methodology for the energy-efficient turbomachines using the aerodynamic adaptability criterion that determines the relations between the velocity circulation and flow acceleration around the vane cascade profiles as the nature-like dominance of the process for converting the mechanical rotational energy of impeller into the internal energy of the air flow. The Karman theory of bound and free vortices, the Chaplygin-Joukowski-Kutta hypothesis, the conformal mapping method, and curve irregularities are used for development of a mathematical model for controlling the aerodynamic adaptability. It is proved that the control dominant is the intensity of the sources distributed over the turbomachine impeller vane profile that determine the flow diffusivity and as a result the acceleration circulation around the profile. It has been experimentally confirmed that the use of profiles obtained using the proposed technique increases the aerodynamic adaptability coefficient of the turbomachine by 51%, while increasing the area of its cost-effective performance by at least 2 times.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000803-000830
Author(s):  
Claudio Truzzi ◽  
F. Raynal ◽  
V. Mevellec ◽  
N. Frederich ◽  
D. Suhr ◽  
...  

Electrografting (eG) is a molecular engineering technology delivering high-quality films for Through Silicon Vias (TSVs). It generates surface-initiated conformal films which are thin, continuous, adherent and uniform. It is a wet-process technique, operated in standard plating tools, and is used on (semi)-conductive surfaces. Chemical grafting (cG) is a similar technology, used to graft films on non-conductive surfaces. A wet deposition of insulator, barrier and copper seed layers inside deep TSVs using a combination of electrografting and chemical grafting techniques has already been demonstrated [1, 2]. Electrografting and chemical grafting formulations and processes have been developed and specifically tailored for TSV diameters ranging from 1 to 200 μm, covering a depth/diameter Aspect Ratio (AR) range from 2:1 to 20:1. Film thickness can be controlled to any value from 50nm to few microns, depending on the layer, with 5% 3ó in-wafer non-uniformity, providing a step coverage (bottom/top thickness ratio) value of up to 90%. Adhesion of all layers is measured using a 16-square scribe tape test method: all layers successfully pass the test. The presentation will focus on film properties and show how TSV formed using these layers meet all key process requirements such as conformality, uniformity, adhesion, reliability and industrial compatibility for cost-effective high volume manufacturing of TSV wafers. A comprehensive set of film properties and reliability data characterized on blanket and pattern 200-mm Si wafers will be discussed. Integration schemes of electrografted layers within current 3D packaging process flows will be presented.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 000832-000845 ◽  
Author(s):  
Aric Shorey ◽  
Scott Pollard

Through-substrate vias are critical for 3DS-IC integration. The choice of glass as an interposer substrate, TGV, present some interesting challenges and opportunities, making glass a compelling alternative to silicon. There are two primary challenges to begin building a precision interposer in thin glass. The first is high quality thin glass wafers (300 mm OD, thickness 0.05 to 0.10 mm, warp and TTV of 30 μm and 1 μm respectively). The second challenge is developing a process capable of providing small (5–10 μm) precision vias in a cost-effective way. “Glass” represents a large class of materials with a wide range of material properties. The first step in developing TGV is to identify the most appropriate glass composition for the application, which furthermore defines important properties such as coefficient of thermal expansion (CTE) and other mechanical properties, chemical durability and electrical properties. The manufacturing process used to develop the glass has a significant impact on quality and manufacturability. Fusion formed glass provides a solution for high volume manufacturing supply in an as-formed, ultra-thin, pristine glass manufactured to tight tolerances, and avoids the issues associated with polishing or thinning. The supply of 50 μm to 100 μm as-formed ultra-thin glass wafers can compare very favorably in cost relative to polished or thinned glass as well as thinned silicon wafer. While there are many technologies that have demonstrated vias in glass, challenges relating to via size and pitch, wafer strength and reliability remain to be resolved. However, substantial progress has been made to meet these challenges. Specific characterization data from some of these processes to demonstrate vias on the order of 10 μm diameter with a 100 μm glass thickness in alternative glass materials will be presented.


HPB ◽  
2019 ◽  
Vol 21 ◽  
pp. S30-S31
Author(s):  
E. Eguia ◽  
P.J. Sweigert ◽  
P.C. Kuo ◽  
H. Janjua ◽  
M.H. Nelson ◽  
...  

Author(s):  
Piyush Upadhyay ◽  
Yuri Hovanski ◽  
Saumyadeep Jana ◽  
Leonard S. Fifield

Development of a robust and cost-effective method of joining dissimilar materials could provide a critical pathway to enable widespread use of multimaterial designs and components in mainstream industrial applications. The use of multimaterial components such as steel-aluminum and aluminum-polymer would allow design engineers to optimize material utilization based on service requirements and could often lead to weight and cost reductions. However, producing an effective joint between materials with vastly different thermal, microstructural, and deformation responses is highly problematic using conventional joining and/or fastening methods. This is especially challenging in cost sensitive, high volume markets that largely rely on low cost joining solutions. Friction stir scribe (FSS) technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like magnesium and aluminum to high temperature materials like steel and titanium. Viable joints between polymer composites and metal can also be made using this method. This paper will present the state of the art, progress made, and challenges associated with this innovative derivative of friction stir welding (FSW) in reference to joining dissimilar metals and polymer/metal combinations.


Author(s):  
Hwasung Rhee ◽  
Ilryong Kim ◽  
Jaehun Jeong ◽  
Nakjin Son ◽  
Heebum Hong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document