Experimental Studies on Cement Sheath Integrity During Pressure Cycling

Author(s):  
Torbjørn Vrålstad ◽  
Ragnhild Skorpa ◽  
Benjamin Werner
Author(s):  
Ragnhild Skorpa ◽  
Benjamin Werner ◽  
Torbjørn Vrålstad

Abstract It is crucial to understand cement sheath degradation mechanisms, since the cement sheath is an important well barrier element. Repeated pressure cycling is known to cause radial cracks and microannuli in the cement sheath, and the stiffness of the surrounding rock determines how much pressure the cement withstands before failure. However, experimental data on the effect of surrounding rock (shale vs. sandstone) on cement sheath integrity are scarce. In this paper we present experimental studies on how different surrounding rocks influence cement sheath integrity. We have used our unique downscaled experimental set-up to perform pressure cycling tests with both shale and sandstones, where cement sheath integrity is visualized in 3D by X-ray computer tomography (CT). The obtained results confirm that a cement sheath surrounded by a rock with a relative higher Young’s modulus can withstand higher casing pressure compared to a cement sheath surrounded by rock with relative lower Young modulus. All cracks were initially observed as small defects in the cement sheath prior to expanding to full radial cracks and propagation into the surrounding formation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Amanda Lindoo ◽  
Katharine V. Cashman

Laboratory experiments investigating syn-eruptive crystallization are fundamental for interpreting crystal and vesicle textures in pyroclasts. Previous experiments have advanced our understanding by varying decompression and cooling pathways, volatile components, and melt composition. However, they have largely failed to produce the high crystal number densities seen in many cryptodome and dome samples. This is feasibly due to the relatively simple decompression pathways employed in experimental studies. In this study, we approach the problem by exploring non-linear decompression pathways. We present two series of experiments: (1) decompression from low initial starting pressure and (2) a compression-and-release step after the initial decompression. The purpose of each series was to simulate (1) decompression of magma that stalls during ascent and (2) pressure cycling that occurs in non-erupted magma during episodic explosive activity. The experiments were carried out on a synthetic rhyodacite (SiO2 = 69 wt%) held initially at 50 MPa and 885°C then decompressed at rates of 0.026 and 0.05 MPa s−1 to 10 MPa A subset of experiments was then subjected to a compression step to 110 MPa followed by near-instantaneous release back to 10 MPa. A substantial volume fraction of dendritic microlites (ϕxtl = 0.27–0.32, Na = 4.79 × 103 mm–2) formed during the initial hold at 50 MPa; additional crystallization during subsequent decompression to ≥ 10 MPa was minimal, as evidenced by only small increases in crystallinity (ϕxtl = 0.28–0.33) and comparable crystal number densities (4.11–7.81 × 103 mm–2). Samples that underwent recompression followed by a second decompression showed no increase in crystal volume fraction but did show extensive disruption of the initial dendritic, box-work microlite structures that produced high number densities (Na = 43.5–87.2 × 103 mm–2) of small individual crystals. The disruption was driven by a combination of rapid vesiculation, expansion and resulting shear along the capsule walls. From these results, we suggest that high crystal number densities may be a signature of rapid deformation occurring after magma stalling in the subsurface, perhaps related to pressure cycling and accompanying rapid changes in vesicularity during repeated small and shallow-sourced explosions. We compare our experiments to pyroclasts from shallow intrusions that preceded the 18 May 1980 eruption of Mount St Helens. These pyroclasts were erupted both prior to 18 May, during episodic precursory explosive activity, and by the 18 May initial lateral blast. The pattern of precursory activity indicates multiple episodes of pressurization (prior to explosive events) and rapid decompression (during explosive events) that we use to illustrate the significance of our experimental results.


Author(s):  
Ragnhild Skorpa ◽  
Thomas Øia ◽  
Ali Taghipour ◽  
Torbjørn Vrålstad

The annular cement sheath is one of the most important well barrier elements, both during production and after well abandonment. It is however well-known that repeated pressure and temperature variations in the wellbore during production and injection can have a detrimental effect on the integrity of the cement sheath. Degradation of cement sheaths result in formation of cracks and microannuli, which leads to loss of zonal isolation and subsequent pressure build-up in the annulus. It is therefore important to study and understand cement sheath failure mechanisms to prevent such barrier failures. A unique laboratory set-up with downscaled samples of rock, cement and pipe has been constructed to study cement sheath failure mechanisms such as radial crack formation and debonding during pressure cycling. Cement integrity before and after pressure cycling is monitored by X-ray computed tomography (CT), which enables 3D visualization and quantification of radial cracks formed inside the cement sheath as well as debonding towards casing and formation. This paper describes this laboratory set-up in detail. Furthermore, some preliminary experimental results are also included that demonstrates the applicability and functionality of the new set-up.


Author(s):  
Kent McDonald ◽  
David Mastronarde ◽  
Rubai Ding ◽  
Eileen O'Toole ◽  
J. Richard McIntosh

Mammalian spindles are generally large and may contain over a thousand microtubules (MTs). For this reason they are difficult to reconstruct in three dimensions and many researchers have chosen to study the smaller and simpler spindles of lower eukaryotes. Nevertheless, the mammalian spindle is used for many experimental studies and it would be useful to know its detailed structure.We have been using serial cross sections and computer reconstruction methods to analyze MT distributions in mitotic spindles of PtK cells, a mammalian tissue culture line. Images from EM negatives are digtized on a light box by a Dage MTI video camera containing a black and white Saticon tube. The signal is digitized by a Parallax 1280 graphics device in a MicroVax III computer. Microtubules are digitized at a magnification such that each is 10-12 pixels in diameter.


Author(s):  
Ina Grau ◽  
Jörg Doll

Abstract. Employing one correlational and two experimental studies, this paper examines the influence of attachment styles (secure, anxious, avoidant) on a person’s experience of equity in intimate relationships. While one experimental study employed a priming technique to stimulate the different attachment styles, the other involved vignettes describing fictitious characters with typical attachment styles. As the specific hypotheses about the single equity components have been developed on the basis of the attachment theory, the equity ratio itself and the four equity components (own outcome, own input, partner’s outcome, partner’s input) are analyzed as dependent variables. While partners with a secure attachment style tend to describe their relationship as equitable (i.e., they give and take extensively), partners who feel anxious about their relationship generally see themselves as being in an inequitable, disadvantaged position (i.e., they receive little from their partner). The hypothesis that avoidant partners would feel advantaged as they were less committed was only supported by the correlational study. Against expectations, the results of both experiments indicate that avoidant partners generally see themselves (or see avoidant vignettes) as being treated equitably, but that there is less emotional exchange than is the case with secure partners. Avoidant partners give and take less than secure ones.


Author(s):  
Anne Andronikof

Based on an analysis of John Exner’s peer-reviewed published work from 1959 to 2007, plus a brief comment for an editorial in Rorschachiana, the author draws a comprehensive picture of the scientific work of this outstanding personality. The article is divided into three sections: (1) the experimental studies on the Rorschach, (2) the clinical studies using the Rorschach, and (3) Exner’s “testament,” which we draw from the last paper he saw published before his death (Exner, 2001/2002). The experimental studies were aimed at better understanding the nature of the test, in particular the respective roles of perception and projection in the response process. These fundamental studies led to a deeper understanding of the complex mechanisms involved in the Rorschach responses and introduced some hypotheses about the intentions of the author of the test. The latter were subsequently confirmed by the preparatory sketches and documents of Hermann Rorschach, which today can be seen at the H. Rorschach Archives and Museum in Bern (Switzerland). Exner’s research has evidenced the notion that the Rorschach is a perceptive-cognitive-projective test.


Sign in / Sign up

Export Citation Format

Share Document