A Leap into Automation for Advanced Fracture Characterization

2021 ◽  
Author(s):  
Radhika Patro ◽  
Manas Mishra ◽  
Hemlata Chawla ◽  
Sambhaji Devkar ◽  
Mrinal Sinha ◽  
...  

Abstract Fractures are the prime conduits of flow for hydrocarbons in reservoir rocks. Identification and characterization of the fracture network yields valuable information for accurate reservoir evaluation. This study aims to portray the benefits and limitations for various existing fracture characterization methods and define strategic workflows for automated fracture characterization targeting both conventional and unconventional reservoirs separately. While traditional seismic provides qualitative information of fractures and faults on a macro scale, acoustics and other petrophysical logs provide a more comprehensive picture on a meso and micro level. High resolution image logs, with shallow depth of investigation are considered the industry standard for analysis of fractures. However, it is imperative to understand the framework of fracture in both near and far field. Various reservoir-specific collaborative workflows have been elucidated for a consistent evaluation of fracture network, results of which are further segregated using class-based machine learning techniques. This study embarks on understanding the critical requirements for fracture characterization in different lithological settings. Conventional reservoirs have good intrinsic porosity and permeability, yet presence of fractures further enhances the flow capacity. In clastic reservoirs, fractures provide an additional permeability assist to an already producible reservoir. In carbonate reservoirs, overall reservoir and production quality exclusively depends on presence of extensive fracture network as it quantitatively controls the fluid flow interactions among otherwise isolated vugs. Devoid of intrinsic porosity and permeability, the presence of open-extensive fractures is even more critical in unconventional reservoirs such as basement, shale-gas/oil and coal-bed methane, since it demarcates the reservoir zone and defines the economic viability for hydrocarbon exploration in reservoirs. Different forward modeling approaches using the best of conventional logs, borehole images, acoustic data (anisotropy analysis, borehole reflection survey and stoneley waveforms) and magnetic resonance logs have been presented to provide reservoir-specific fracture characterization. Linking the resolution and depth of investigation of different available techniques is vital for the determination of openness and extent of the fractures into the formation. The key innovative aspect of this project is the emphasis on an end-to-end suitable quantitative analysis of flow contributing fractures in different conventional and unconventional reservoirs. Successful establishment of this approach capturing critical information will be the stepping-stone for developing machine learning techniques for field level assessment.

2021 ◽  
pp. 1-81
Author(s):  
William Harbert ◽  
Richard Hammack ◽  
Erich Zorn ◽  
Alexander Bear ◽  
Timothy Carr ◽  
...  

The extensive development of unconventional reservoirs using horizontal drilling and multistage hydraulic fracturing has generated large volumes of reservoir characterization and production data. The analysis of this abundant data using statistical methods and advanced machine learning techniques can provide data-driven insights into well performance. Most predictive modelling studies have focused on the impact that different well completion and stimulation strategies have on well production but have not fully exploited the available in-situ rock property data to determine its role in reservoir productivity. In this study, we utilized machine learning techniques to rank rock mechanical properties, microseismic attributes, and stimulation parameters in the order of their significance for predicting natural gas production from an unconventional reservoir. The data for this study came from a hydraulically fractured well in the Marcellus Shale in Monongalia County, West Virginia. The data classes included measurements aggregated by well completion stage that included: 1) gas production; 2) well-log-derived measurements including bulk density, elastic moduli, shear impedance, compressional impedance, brittleness, and gamma measurements; 3) microseismic attributes; 4) Long Period Long Duration (LPLD) event counts; 5) fracture counts; and 6) stimulation parameters that included fluid injection volume and average pumping pressure. In this study to identify observable proxies for the drivers of gas production we evaluated five commonly used machine learning approaches including Multivariate adaptive regression spline (MARS), Gaussian mixture model (GMM), Random forest (RF), Gradient boosting (GB), and Neural network (NN). We selected five variables including LPLD event count, seismogenic b-value, hydraulic diffusivity, cumulative moment, and fluid volume as the features most likely to impact gas productivity at the stage level in the study area. The data-driven selection of these parameters for their importance in determining gas production can help reservoir engineers design more effective hydraulic fracture treatments in the Marcellus Shale and other similar unconventional reservoirs.


2006 ◽  
Author(s):  
Christopher Schreiner ◽  
Kari Torkkola ◽  
Mike Gardner ◽  
Keshu Zhang

2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 389-P
Author(s):  
SATORU KODAMA ◽  
MAYUKO H. YAMADA ◽  
YUTA YAGUCHI ◽  
MASARU KITAZAWA ◽  
MASANORI KANEKO ◽  
...  

Author(s):  
Anantvir Singh Romana

Accurate diagnostic detection of the disease in a patient is critical and may alter the subsequent treatment and increase the chances of survival rate. Machine learning techniques have been instrumental in disease detection and are currently being used in various classification problems due to their accurate prediction performance. Various techniques may provide different desired accuracies and it is therefore imperative to use the most suitable method which provides the best desired results. This research seeks to provide comparative analysis of Support Vector Machine, Naïve bayes, J48 Decision Tree and neural network classifiers breast cancer and diabetes datsets.


Author(s):  
Padmavathi .S ◽  
M. Chidambaram

Text classification has grown into more significant in managing and organizing the text data due to tremendous growth of online information. It does classification of documents in to fixed number of predefined categories. Rule based approach and Machine learning approach are the two ways of text classification. In rule based approach, classification of documents is done based on manually defined rules. In Machine learning based approach, classification rules or classifier are defined automatically using example documents. It has higher recall and quick process. This paper shows an investigation on text classification utilizing different machine learning techniques.


Author(s):  
Feidu Akmel ◽  
Ermiyas Birihanu ◽  
Bahir Siraj

Software systems are any software product or applications that support business domains such as Manufacturing,Aviation, Health care, insurance and so on.Software quality is a means of measuring how software is designed and how well the software conforms to that design. Some of the variables that we are looking for software quality are Correctness, Product quality, Scalability, Completeness and Absence of bugs, However the quality standard that was used from one organization is different from other for this reason it is better to apply the software metrics to measure the quality of software. Attributes that we gathered from source code through software metrics can be an input for software defect predictor. Software defect are an error that are introduced by software developer and stakeholders. Finally, in this study we discovered the application of machine learning on software defect that we gathered from the previous research works.


Sign in / Sign up

Export Citation Format

Share Document