Optimizing Seawater Based Fracture Fluids Rheology Utilizing Chelating Agents

2021 ◽  
Author(s):  
Amro Othman ◽  
Murtada Saleh Aljawad ◽  
Muhammad Shahzad Kamal ◽  
Mohamed Mahmoud ◽  
Shirish Patil

Abstract Due to the scarcity and high cost of freshwater, especially in the Gulf region, utilization of seawater as a fracturing fluid gained noticeable interest. However, seawater contains high total dissolved solids (TDS) that may damage the formation and degrade the performance of the fracturing fluids. Numerous additives are required to reduce the damaging effect and improve the viscosity resulting in an expensive and non-eco-friendly fracturing fluid system. Chelating agents, which are environmentally benign, are proposed in this study as the replacement of many additives for seawater fracturing fluids. This study focuses on optimizing chelating agents to achieve high viscosity employing the standard industry rheometers. Carboxymethyl Hydroxypropyl Guar Gum (CMHPG) polymer, which is effective in hydraulic fracturing, was used in this research with 0.5 and 1.0 wt% in deionized water (DW) as well as seawater (SW). It was first tested as a standalone additive at different conditions to provide a benchmark then combined with different concentrations, and pH level chelating agents. In this study the hydration test was conducted through different conditions. It was observed that CMHPG, when tested as a standalone additive, provided slightly higher viscosity in SW compared to DW. Also, increasing polymer concentration from 0.5 to 1.0 wt% provided three folds of viscosity. The viscosity did not show time dependence behavior at room temperature for the aforementioned experiments where all hydration tests were run at 511 1/s shear rate. Temperature, however, had a significant impact on both viscosity magnitude and behavior. At 70 °C, the fluid viscosity increased with time where low viscosity was achieved early on but kept increasing with shearing time. Similarly, high pH chelating agents provided time dependant viscosity behavior when mixed with CMHPG. This behavior is important as low viscosity is favorable during pumping but high viscosity when the fluids hit the formation. The study investigates the possibility of utilizing chelating agents with seawater to replace numerous additives. It acts as a crosslinker at early shearing times, where a gradual increase in viscosity was observed and a breaker in the reservoir harsh conditions. It also captures the divalent ions that are common in seawater, which replaces the need for scale inhibitors. The viscosity increase behavior can be controlled by adjusting the pH level, which could be desirable during operations.

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1783
Author(s):  
Klaudia Wilk-Zajdel ◽  
Piotr Kasza ◽  
Mateusz Masłowski

In the case of fracturing of the reservoirs using fracturing fluids, the size of damage to the proppant conductivity caused by treatment fluids is significant, which greatly influence the effective execution of hydraulic fracturing operations. The fracturing fluid should be characterized by the minimum damage to the conductivity of a fracture filled with proppant. A laboratory research procedure has been developed to study the damage effect caused by foamed and non-foamed fracturing fluids in the fractures filled with proppant material. The paper discusses the results for high quality foamed guar-based linear gels, which is an innovative aspect of the work compared to the non-foamed frac described in most of the studies and simulations. The tests were performed for the fracturing fluid based on a linear polymer (HPG—hydroxypropyl guar, in liquid and powder form). The rheology of nitrogen foamed-based fracturing fluids (FF) with a quality of 70% was investigated. The quartz sand and ceramic light proppant LCP proppant was placed between two Ohio sandstone rock slabs and subjected to a given compressive stress of 4000–6000 psi, at a temperature of 60 °C for 5 h. A significant reduction in damage to the quartz proppant was observed for the foamed fluid compared to that damaged by the 7.5 L/m3 natural polymer-based non-foamed linear fluid. The damage was 72.3% for the non-foamed fluid and 31.5% for the 70% foamed fluid, which are superior to the guar gum non-foamed fracturing fluid system. For tests based on a polymer concentration of 4.88 g/L, the damage to the fracture conductivity by the non-foamed fluid was 64.8%, and 26.3% for the foamed fluid. These results lead to the conclusion that foamed fluids could damage the fracture filled with proppant much less during hydraulic fracturing treatment. At the same time, when using foamed fluids, the viscosity coefficient increases a few times compared to the use of non-foamed fluids, which is necessary for proppant carrying capacities and properly conducted stimulation treatment. The research results can be beneficial for optimizing the type and performance of fracturing fluid for hydraulic fracturing in tight gas formations.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2111
Author(s):  
Amro Othman ◽  
Murtada Saleh Aljawad ◽  
Mohamed Mahmoud ◽  
Muhammad Shahzad Kamal ◽  
Shirish Patil ◽  
...  

Hydraulic fracturing consumes massive volumes of freshwater that is usually scarce and costly. Such operation is not sustainable, and hence seawater could be used as an alternative. Nevertheless, seawater has high total dissolved solids (TDS), affecting the fracturing fluid rheology and providing a damage potential to the subterranean hydrocarbon reservoirs. Resolving these issues requires fracturing fluid systems with many additives, which results in an expensive and non-eco-friendly system. This study proposes eco-friendly and biodegradable chelating agents that could replace many additives such as scale inhibitors and crosslinkers. The study aims to optimize the rheology of seawater fracturing fluids using a chelating agent and polymer. By optimizing N,N-Dicarboxymethyl glutamic acid (GLDA) conditions, high viscosity was achieved using a standard industry rheometer. The GLDA was mixed with carboxymethyl hydroxypropyl guar (CMHPG) polymer and tested in both deionized water (DW) and seawater (SW). The polymer was examined first, where the rheology did not show a time-dependent behavior. The polymer in SW showed a slightly higher viscosity than in DW. The GLDA and CMHPG were tested at different temperatures, pH, and concentrations. These sets showed a time-dependent viscosity behavior, which can be utilized in various fracturing steps. Results showed that the solution pH and GLDA concentration significantly impacted the fluid viscosity magnitude and behavior. The developed formulation is shear thinning, where the viscosity declines as the shear rate increases. The temperature negatively impacted the viscosity and caused the formulation to break. The study provided an understanding of how to optimize the rheology of SW fracturing fluid based on GLDA chelating and CMHPG polymer.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247948
Author(s):  
Shiliang Xu ◽  
Mengke Cui ◽  
Renjie Chen ◽  
Qiaoqing Qiu ◽  
Jiacai Xie ◽  
...  

With the increasing demand for energy, fracturing technology is widely used in oilfield operations over the last decades. Typically, fracturing fluids contain various additives such as cross linkers, thickeners and proppants, and so forth, which makes it possess the properties of considerably complicated components and difficult processing procedure. There are still some difficult points needing to be explored and resolved in the hydroxypropyl guar gum (HPG) removal process, e.g., high viscosity and removal of macromolecular organic compounds. Our works provided a facile and economical HPG removal technology for fracturing fluids by designing a series of processes including gel-breaking, coagulation and precipitation according to the diffusion double layer theory. After this treatment process, the fracturing fluid can meet the requirements of reinjection, and the whole process was environment friendly without secondary pollution characteristics. In this work, the fracturing fluid were characterized by scanning electron microscopy (SEM), Energy dispersive X-ray (EDX), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) spectroscopy technologies, etc. Further, the micro-stabilization and destabilization mechanisms of HPG in fracturing fluid were carefully investigated. This study maybe opens up new perspective for HPG removal technologies, exhibiting a low cost and strong applicability in both fundamental research and practical applications.


2018 ◽  
Vol 10 (5) ◽  
pp. 76
Author(s):  
Methaq Hamad Sabar ◽  
Iman Sabah Jaafar ◽  
Masar Basim Mohsin Mohamed

Objective: The aim of this study was to formulate ketoconazole (keto) as oral floating in situ gel to slow the release of keto in the stomach.Methods: Sodium alginate (Na alginate) was used as a primary polymer in the preparation of the in situ gel and was supported by the following polymers: guar gum (GG), hydroxypropyl methylcellulose (HPMC) K4M, K15M and carbapol 940 as viscosity enhancing agents. As a consequence, and to complete the gelation process of above formulations was by adding the calcium carbonate (CaCO3). The in situ gels were investigated by the following tests: floating lag time, floating duration, viscosity, drug content, in vitro gelling studies and in vitro release study.Results: The study showed that the faster release was obtained with F1 which contained Na alginate alone. Additionally, reduction in Na alginate concentration resulted in significant increase in drug release. It was also noted that the increase in GG (viscosity enhancing polymer) concentration resulted in non-significant decrease in percent drug release and the reduction in CaCO3 concentration led to significant increase in drug release. Moreover, the release of drug was also affected by grade of viscosity enhancing polymer, the faster release was observed with the formula which contained a polymer of low viscosity (HPMC K4M) and an opposite result was with the high viscosity polymer (HPMCK15M).Conclusion: This study showed the formulation of Na alginate with GG and CaCO3, led to gain floating in situ gel and a sustained release of keto. 


2022 ◽  
Author(s):  
John E. Busteed ◽  
Jesus Arroyo ◽  
Francisco Morales ◽  
Mohammed Omer ◽  
Francisco E. Fragachan

Abstract Uniformly distributing proppant inside fractures with low damage on fracture conductivity is the most important index of successful fracturing fluids. However, due to very low proppant suspension capacity of slickwater and friction reducers fracturing fluids and longer fracture closure time in nano & pico darcies formations, proppants settles quickly and accumulates near wellbore resulting in worse-than-expected well performance, as the fracture full capacity is not open and contributing to production. Traditionally, cross-linked polymer fluid systems are capable to suspend and transport high loading of proppants into a hydraulically generated fracture. Nevertheless, amount of unbroken cross-linked polymers is usually left in fractures causing damage to fracture proppant conductivity, depending on polymer loading. To mitigate these challenges, a low viscosity-engineered-fluid with excellent proppantcarrying capacity and suspension-in excess of 30 hours at static formation temperature conditions - has been designed, enhancing proppant placement and distribution within developed fractures, with a 98% plus retained conductivity. In this work experimental and numerical tests are presented together with the path followed in developing a network of packed structures from polymer associations providing low viscosity and maximum proppant suspension. Challenges encountered during field injection with friction are discussed together with the problem understanding characterized via extensive friction loop tests. Suspension tests performed with up to 8-10 PPA of proppant concentration at temperature conditions are shared, together with slot tests performed. Physics-based model results from a 3D Discrete Fracture Network simulator that computes viscosity, and elastic parameters based on shear rate, allows to estimate pressure losses along the flow path from surface lines, tubular goods, perforations, and fracture. This work will demonstrate the advanced capabilities and performance of the engineered fluid over conventional fracturing fluids and its benefits. Additionally, this paper will present field injection pressure analysis performed during the development of this fluid, together with a field case including production results after 8 months of treatment. The field case production decline observed after fracture treatment demonstrates the value of this system in sustaining well production and adding additional reserves.


Author(s):  
Gurjeet Singh ◽  
Kurt Beschorner

Slip and fall accidents are a major occupational health concern. Identifying the lubrication mechanisms affecting shoe-floor-contaminant friction under biofidelic (testing conditions that mimic human slipping) conditions is critical to identifying unsafe surfaces and designing a slip-resistant work environment. The purpose of this study is to measure the effects of varying tread design, tread depth and fluid viscosity on underfoot hydrodynamic pressure, the load supported by the fluid (i.e. load carrying capacity), and the coefficient of friction (COF) during a simulated slip. A single vinyl floor material and two shoe types (work shoe and sportswear shoe) with three different tread depths (no tread, half tread and full tread) were tested under two lubrication conditions: 1) 90% glycerol and 10% water (219 cP) and 2) 1.5% Detergent-98.5% (1.8cP) water solutions. Hydrodynamic pressures were measured with a fluid pressure sensor embedded in the floor and a forceplate was used to measure the friction and normal forces used to calculate coefficient of friction. The study showed that hydrodynamic pressure developed when high viscosity fluids were combined with no tread and resulted in a major reduction of COF (0.005). Peak hydrodynamic pressures (and load supported by the fluid) for the no tread-high viscous conditions were 234 kPa (200.5 N) and 87.63 kPa (113.3 N) for the work and sportswear shoe, respectively. Hydrodynamic pressures were negligible when at least half the tread was present or when a low viscosity fluid was used despite the fact that many of these conditions also resulted in dangerously low COF values. The study suggests that hydrodynamic lubrication is only relevant when high viscous fluids are combined with little or no tread and that other lubrication mechanisms besides hydrodynamic effects are relevant to slipping like boundary lubrication.


RSC Advances ◽  
2017 ◽  
Vol 7 (84) ◽  
pp. 53290-53300 ◽  
Author(s):  
Haiming Fan ◽  
Zheng Gong ◽  
Zhiyi Wei ◽  
Haolin Chen ◽  
Haijian Fan ◽  
...  

A facile procedure has been proposed to evaluate the temperature–resistance performance of fracturing fluids, which was used to understand the temperature–tolerance performance of a borate cross-linked hydroxypropyl guar gum fracturing fluid.


2020 ◽  
Vol 10 (9) ◽  
pp. 3027
Author(s):  
Cong Lu ◽  
Li Ma ◽  
Zhili Li ◽  
Fenglan Huang ◽  
Chuhao Huang ◽  
...  

For the development of tight oil reservoirs, hydraulic fracturing employing variable fluid viscosity and proppant density is essential for addressing the problems of uneven placement of proppants in fractures and low propping efficiency. However, the influence mechanisms of fracturing fluid viscosity and proppant density on proppant transport in fractures remain unclear. Based on computational fluid dynamics (CFD) and the discrete element method (DEM), a proppant transport model with fluid–particle two-phase coupling is established in this study. In addition, a novel large-scale visual fracture simulation device was developed to realize the online visual monitoring of proppant transport, and a proppant transport experiment under the condition of variable viscosity fracturing fluid and proppant density was conducted. By comparing the experimental results and the numerical simulation results, the accuracy of the proppant transport numerical model was verified. Subsequently, through a proppant transport numerical simulation, the effects of fracturing fluid viscosity and proppant density on proppant transport were analyzed. The results show that as the viscosity of the fracturing fluid increases, the length of the “no proppant zone” at the front end of the fracture increases, and proppant particles can be transported further. When alternately injecting fracturing fluids of different viscosities, the viscosity ratio of the fracturing fluids should be adjusted between 2 and 5 to form optimal proppant placement. During the process of variable proppant density fracturing, when high-density proppant was pumped after low-density proppant, proppants of different densities laid fractures evenly and vertically. Conversely, when low-density proppant was pumped after high-density proppant, the low-density proppant could be transported farther into the fracture to form a longer sandbank. Based on the abovementioned observations, a novel hydraulic fracturing method is proposed to optimize the placement of proppants in fractures by adjusting the fracturing fluid viscosity and proppant density. This method has been successfully applied to more than 10 oil wells of the Bohai Bay Basin in Eastern China, and the average daily oil production per well increased by 7.4 t, significantly improving the functioning of fracturing. The proppant settlement and transport laws of proppant in fractures during variable viscosity and density fracturing can be efficiently revealed through a visualized proppant transport experiment and numerical simulation study. The novel fracturing method proposed in this study can significantly improve the hydraulic fracturing effect in tight oil reservoirs.


2021 ◽  
Author(s):  
Ayomikun Bello

Abstract Slick water fracturing fluids with high viscosity and minimal friction pressure losses are commonly employed in hydraulic fracturing nowadays. At the same time, high injection rates can be used to perform hydraulic fracturing to get the calculated fracture sizes. The conventional algorithm for conducting a standard proppant hydraulic fracturing includes performing a pressure test using a linear gel without a trial proppant pack to determine the quality of communication with the formation and the initial parameters of the fracture; and performing a mini-hydraulic fracturing on a cross-linked gel with a trial proppant pack (1000 - 2000 kg) to assess the parameters of the fracture development used to correct the design of the main hydraulic fracturing operation. However, in complex geological conditions associated with the presence of small clay barriers between the target formation and above or below the water-saturated layers, as well as in low-productive formations, this conventional method of conducting hydraulic fracturing operations using high-viscosity fluids is not always suitable. Hydraulic fracturing in thin-layer formations is associated with a significant risk of the tightness established by the fracture being broken, as well as fluids contained in the underlying or overlying layers being involved in the drainage process. Hydraulic fracturing in low-productive formations creates fractures that are similar in shape to radial fractures, reducing the efficiency and profitability of the impact due to inefficient use of materials and reagents. The main task in this situation is to limit the height of the fracture development and increase their length. It is necessary to use low-viscosity fracturing fluids with a high ability to transfer proppants to reduce the specific pressure in the fracture and control the height of the rupture. The goal of this research is to develop such fluid.


2010 ◽  
Vol 650 ◽  
pp. 215-250 ◽  
Author(s):  
JOHN E. SADER ◽  
THOMAS P. BURG ◽  
SCOTT R. MANALIS

The fluid–structure interaction of resonating microcantilevers immersed in fluid has been widely studied and is a cornerstone in nanomechanical sensor development. In many applications, fluid damping imposes severe limitations by strongly degrading the signal-to-noise ratio of measurements. Recently, Burg et al. (Nature, vol. 446, 2007, pp. 1066–1069) proposed an alternative type of microcantilever device whereby a microfluidic channel was embedded inside the cantilever with vacuum outside. Remarkably, it was observed that energy dissipation in these systems was almost identical when air or liquid was passed through the channel and was 4 orders of magnitude lower than that in conventional microcantilever systems. Here, we study the fluid dynamics of these devices and present a rigorous theoretical model corroborated by experimental measurements to explain these observations. In so doing, we elucidate the dominant physical mechanisms giving rise to the unique features of these devices. Significantly, it is found that energy dissipation is not a monotonic function of fluid viscosity, but exhibits oscillatory behaviour, as fluid viscosity is increased/decreased. In the regime of low viscosity, inertia dominates the fluid motion inside the cantilever, resulting in thin viscous boundary layers – this leads to an increase in energy dissipation with increasing viscosity. In the high-viscosity regime, the boundary layers on all surfaces merge, leading to a decrease in dissipation with increasing viscosity. Effects of fluid compressibility also become significant in this latter regime and lead to rich flow behaviour. A direct consequence of these findings is that miniaturization does not necessarily result in degradation in the quality factor, which may indeed be enhanced. This highly desirable feature is unprecedented in current nanomechanical devices and permits direct miniaturization to enhance sensitivity to environmental changes, such as mass variations, in liquid.


Sign in / Sign up

Export Citation Format

Share Document