Surfactant and Friction Reducer Interaction in High Salinity Slickwater Fracturing

2022 ◽  
Author(s):  
Abdelrahman Kotb ◽  
Tariq Almubarak ◽  
Hisham A. Nasr-El-Din

Abstract Slickwater fracturing has been phenomenally successful in unconventional shale formations due to their unique geomechanical properties. Nevertheless, these treatments consume large volumes of water. On average, hydraulic fracturing treatments use up to 13,000,000 gallons of water in unconventional wells. In an effort to reduce the use of freshwater, research has focused on developing friction reducers (FR) that can be used in high salinity brines such as seawater and produced water. However, commonly used friction reducers precipitate in high salinity brine, lose their friction reduction properties, and cause severe formation damage to the proppant pack. Consequently, this work proposes the use of common surfactants to aid the FR system and achieve salt tolerance at water salinity up to 230,000 ppm. This paper will (a) evaluate five surfactants for use in high salinity FR systems, (b) evaluate the rheological properties of these systems, and (c) evaluate the damage generated from using these systems. Four types of tests were conducted to analyze the performance of the new FR at high salinity brine. These are (a) rheology, (b) static proppant settling, (c) breakability, and (d) coreflood tests. Surfactants with ethylene oxide chain lengths ranging from 6 to 12 were incorporated in the tests. Rheology tests were done at temperatures up to 150°F to evaluate the FR at shear rates between 40-1000 s-1. Proppant settling tests were performed to investigate the proppant carrying capacity of the new FR system. Breakability and coreflood tests were conducted to study the potential damage caused by the proposed systems. Rheology tests showed that using surfactants with high ethylene oxide chain length (>8) improved the performance of the FR at water salinity up to 230,000 ppm. Anionic surfactants performed better than cationic surfactants in improving FR performance. The ammonium persulfate was used as a breaker and showed effectiveness with the proposed formula. Finally, the retained permeability after 12 hours of injecting the FR was over 95%. This shows that after using this system, the productivity of the formation is minimally affected by the new FR system. This research provides the first guide on studying the impact of using different ethylene oxide chain lengths of surfactants in developing new FR systems that can perform well in a high salinity environment. Given the economic and environmental benefits of reusing produced water, this new system can save costs that were previously spent on water treatments.

2013 ◽  
Vol 3 (2) ◽  
pp. 148-159
Author(s):  
S. F. Barker ◽  
R. Faggian ◽  
J. Blackbeard ◽  
G. Hepworth ◽  
A. J. Hamilton

In 2008, vegetable growers observed stunted lettuce plants showing signs of chlorosis and wilting. It was suspected that monochloramine in the recycled water used for irrigation, in combination with extreme environmental conditions (high irrigation water salinity and extreme heat), was responsible for these crop failures. A series of glasshouse studies was conducted to evaluate the impact of monochloramine concentration alone on iceberg lettuce seedlings, as well as in combination with high salinity and hot ambient temperatures. Monochloramine concentrations up to 9 and 15 mg L−1 Cl2 for continuous and initial irrigation only, respectively, did not affect the weight of iceberg lettuce heads (p > 0.05), while the combination of monochloramine (4–5 mg L−1 Cl2) and salinity (3,500 μS cm−1) did not significantly affect harvest measurements (p > 0.05). We therefore conclude that it is unlikely that monochloramine was responsible for the observed crop failures.


2021 ◽  
Vol 13 (6) ◽  
pp. 3199
Author(s):  
Laith Shalalfeh ◽  
Ashraf AlShalalfeh ◽  
Khaled Alkaradsheh ◽  
Mahmoud Alhamarneh ◽  
Ahmad Bashaireh

An increasing number of electric vehicles (EVs) are replacing gasoline vehicles in the automobile market due to the economic and environmental benefits. The high penetration of EVs is one of the main challenges in the future smart grid. As a result of EV charging, an excessive overloading is expected in different elements of the power system, especially at the distribution level. In this paper, we evaluate the impact of EVs on the distribution system under three loading conditions (light, intermediate, and full). For each case, we estimate the maximum number of EVs that can be charged simultaneously before reaching different system limitations, including the undervoltage, overcurrent, and transformer capacity limit. Finally, we use the 19-node distribution system to study these limitations under different loading conditions. The 19-node system is one of the typical distribution systems in Jordan. Our work estimates the upper limit of the possible EV penetration before reaching the system stability margins.


2021 ◽  
Vol 13 (3) ◽  
pp. 1426
Author(s):  
Delu Wang ◽  
Xun Xue ◽  
Yadong Wang

The comprehensive and accurate monitoring of coal power overcapacity is the key link and an important foundation for the prevention and control of overcapacity. The previous research fails to fully consider the impact of the industry correlation effect; making it difficult to reflect the state of overcapacity accurately. In this paper; we comprehensively consider the fundamentals; supply; demand; economic and environmental performance of the coal power industry and its upstream; downstream; competitive; and complementary industries to construct an index system for assessing coal power overcapacity risk. Besides; a new evaluation model based on a correlation-based feature selection-association rules-data envelopment analysis (CFS-ARs-DEA) integrated algorithm is proposed by using a data-driven model. The results show that from 2008 to 2017; the risk of coal power overcapacity in China presented a cyclical feature of “decline-rise-decline”, and the risk level has remained high in recent years. In addition to the impact of supply and demand; the environmental benefits and fundamentals of related industries also have a significant impact on coal power overcapacity. Therefore; it is necessary to monitor and govern coal power overcapacity from the overall perspective of the industrial network, and coordinate the advancement of environmental protection and overcapacity control.


2015 ◽  
Vol 183 ◽  
pp. 291-307 ◽  
Author(s):  
Niklas von der Assen ◽  
André Sternberg ◽  
Arne Kätelhön ◽  
André Bardow

Potential environmental benefits have been identified for the utilization of carbon dioxide (CO2) as a feedstock for polyurethanes (PUR). CO2 can be utilized in the PUR supply chain in a wide variety of ways ranging from direct CO2 utilization for polyols as a PUR precursor, to indirect CO2 utilization for basic chemicals in the PUR supply chain. In this paper, we present a systematic exploration and environmental evaluation of all direct and indirect CO2 utilization options for flexible and rigid PUR foams. The analysis is based on an LCA-based PUR supply chain optimization model using linear programming to identify PUR production with minimal environmental impacts. The direct utilization of CO2 for polyols allows for large specific impact reductions of up to 4 kg CO2-eq. and 2 kg oil-eq. per kg CO2 utilized, but the amounts of CO2 that can be utilized are limited to 0.30 kg CO2 per kg PUR. The amount of CO2 utilized can be increased to up to 1.7 kg CO2 per kg PUR by indirect CO2 utilization in the PUR supply chain. Indirect CO2 utilization requires hydrogen (H2). The environmental impacts of H2 production strongly affect the impact of indirect CO2 utilization in PUR. To achieve optimal environmental performance under the current fossil-based H2 generation, PUR production can only utilize much less CO2 than theoretically possible. Thus, utilizing as much CO2 in the PUR supply chain as possible is not always environmentally optimal. Clean H2 production is required to exploit the full CO2 utilization potential for environmental impact reduction in PUR production.


2021 ◽  
Author(s):  
Dawn Friesen ◽  
Brian Seymour ◽  
Aaron Sanders

Abstract Viscoelastic surfactant (VES)-based fracturing fluids can reduce the risk of formation damage when compared with conventional polymer-based fracturing systems. However, many VES systems lose viscoelasticity rapidly under high-temperature conditions, leading to high fluid leakoff and problems in proppant placement. A gemini cationic VES-based system offering thermal stability above 250°F and its efficiency in friction reduction is presented in this paper. Rheology measurements were conducted on viscoelastic cationic gemini surfactant fluids as a function of temperature (70 – 300°F) and surfactant concentration. The length of surfactant alkyl chain was varied to investigate the impact of surfactant chain length on VES fluid viscosity at elevated temperatures. The effect of flow rate on friction reduction capability of the surfactant fluid was measured on a friction flow loop. Foam rheology measurements were conducted to evaluate the VES fluid's ability to maintain high temperature viscosity with reduced surfactant concentration. A gemini cationic surfactant was used to prepare a viscoelastic surfactant system that could maintain viscosity over 50 cP at a shear rate of 100 s−1up to at least 250°F. With this system, viscoelastic gel viscosity was maintained without degradation for over 18 hours at 250°F, and the fluid showed rapid shear recovery throughout. Decreasing the average alkyl chain length on the surfactant reduced the maximum working temperature of the resulting viscoelastic gel and showed the critical influence of surfactant structure on the resulting fluid performance. The presence of elongated, worm-like micelles in the fluid provided polymer-like friction reduction even at low surfactant concentrations, with friction reduction of over 70% observed during pumping (relative to fresh water) up to a critical Reynolds number. Energized fluids could also be formulated with the gemini surfactant to give foam fluids suitable for hydraulic fracturing or wellbore cleanouts. The resulting viscoelastic surfactant foams had viscosities over 50 cP up to at least 300°F with both nitrogen and carbon dioxide as the gas phase. The information presented in this paper is important for various field applications where thermal stability of the treatment fluid is essential. This will hopefully expand the use of VES-based systems as an alternative to conventional polymer systems in oilfield applications where a less damaging viscosified fluid system is required.


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 686 ◽  
Author(s):  
Sanjeev Manocha ◽  
François Ponchon

The EU28 total lime demand in 2017 was estimated at about 20 million tons, out of which about 40% are consumed in the iron and steel industry. Steel remains the major consumer after environment and construction. The lime industry is quite mature and consolidated in developed countries, with enough reserves and production to serve regional markets while being fragmented in developing nations where steel producers rely on local sourcing. There is relatively very little trade for lime worldwide. Lime has a critical role at different steps of the steelmaking process, and especially to make a good slag facilitating the removal of sulphur and phosphorus, and for providing a safer platform to withstand high intensity arc plasma in the electric arc furnace (EAF), and violent reactions in the basic oxygen furnace (BOF). Lime quality and quantity has a direct effect on slag quality, which affects metallurgical results, refractory life, liquid metal yield, and productivity, and therefore the total cost of the steel production. In this paper, we present the importance of careful selection in the limestone and calcination process, which influences critical lime quality characteristics. We shall further elaborate on the impact of lime characteristics in the optimization of the steelmaking process, metallurgical benefits, overall cost impact, potential savings, and environmental benefits.


2013 ◽  
Vol 671-674 ◽  
pp. 496-499 ◽  
Author(s):  
Ming Yang Wang ◽  
Yun Peng Chu ◽  
Yong Yao ◽  
Yu Ping Zhu

China is a developing country, and also a quake-prone country. On the one hand is the Special national conditions that per capita energy shortage and frequent earthquakes, on the other hand is the social economy development and people's living environment requirements continue to increase, both of them raised new requirement of China’s residence system development. Light steel structure residence is energy conservation , environmental protection, safety and seismic, these unique advantages just to meet the current development of residential industry in China, so it has a good development prospect. This article start from the realistic background, around the application and development of our country’s light steel structure residence presently, mainly introduced the characteristics of light steel structure residence, the impact of construction industry, and the social benefits, environmental benefits, housing industrialization effective and comprehensive benefits it can produce.


Sign in / Sign up

Export Citation Format

Share Document