Relative Permeability Behavior of Oil- Water Systems in Wolfcamp and Eagle Ford Fractures

2022 ◽  
Author(s):  
Dante Guerra ◽  
Deron Arceneaux ◽  
Ding Zhu ◽  
A. D. Hill

Abstract Presently, two-phase flow behavior through propped and unpropped fractures is poorly understood, and due to this fact, reservoir modeling using numerical simulation for the domain that contains fractures typically assumes straight-line relative permeability curves and zero capillary pressure in the fractures. However, there have been several studies demonstrating that both viscous and capillary dominated flow can be expected in fractured reservoirs, where non-linear fracture relative permeabilities must be used to accurately model these reservoirs. The objective of this study is to develop an understanding of the relative permeability of oil-water systems in fractures through experimental study. The experimental measurements conducted in this study were done using downhole cores from the Wolfcamp and the Eagle Ford Shale formations. The cores were cut to 1.5-in diameter and 6-in length testing samples. The specimens are saw-cut to generate a fracture along each sample first, and then conditioned in the reservoir fluid at the reservoir temperature for a minimum of 30 days prior to any testing. Wolfcamp and Eagle Ford formation oil and reconstituted brine with and without surfactants are used as the test fluids. The measurements were recorded at effective fracture closure stress and reservoir temperature. Also, real-time measurements of density, pressure, and flow rate are recorded throughout the duration of each test. Fluid saturation within the fracture was calculated using the mass continuity equation. The oil-water relative permeability was measured using the steady-state method. All measurements were conducted at reservoir temperature and at representative effective fracture closure stress. The data from the experimental measurements was analyzed using Darcy's law, and a clear relationship between relative permeability and saturation was observed. The calculated relative permeability curves closely follow the generalized Brooks-Corey correlation for oil-water systems. Furthermore, there was a significant difference in the relative permeability curves between the oil-water only systems and the oil-water surfactant systems. The result of this study is useful for estimating the expected oil production more realistically. It also provides information about the effect of surfactants on oil-water relative permeability for optimal design of fracture fluids.

2015 ◽  
Vol 8 (1) ◽  
pp. 181-185
Author(s):  
Yang Manping ◽  
Xi Wancheng ◽  
Zhao Xiaojing ◽  
Cheng Yanhong

Oil-water relative permeability curves are the characteristic curves of evaluating the oil-water infiltrating fluid and also are an important part of reservoir engineering studies. Through a large number of core flooding experiments, based on the establishment of oil-water relative permeability calculation models, the use of the function of the relative permeability curves divided these into the water phase concave, water phase convex and a water phase linear categories. The relationship between different types of relative permeability curves with reservoir characteristics, moisture content, common infiltration points, common permeation range and oil displacement efficiency have been evaluated. Analysis the distribution of the reservoir usable remaining oil and reservoir irreducible oil of different types of relative permeability curves.


2020 ◽  
Vol 10 (8) ◽  
pp. 3937-3945
Author(s):  
M. E. Helmi ◽  
M. Abu El Ela ◽  
S. M. Desouky ◽  
M. H. Sayyouh

Abstract In this work, a laboratory study of enhanced oil recovery (EOR) was carried out using Egyptian crude oil of 37°API extracted from a reservoir in the Western Desert to identify the optimum conditions for the application of locally prepared nanocomposite polymer flooding under harsh reservoir condition. In contrary to the other studies, we tested the ability of nanocomposite polymer where nanoparticles are involved in the polymer matrix during polymerization process. Measurements of viscosity and shear rate of several solutions were taken. Displacement runs were conducted at different conditions of nanocomposite polymer salinities (10,000, 20,000, 30,000, 40,000, 50,000, 60,000 and 65,000 ppm), concentrations (1, 1.5, 2, 2.5, 3, 3.5 and 4 g/L) and slug sizes (0.2, 0.4, 0.6 and 0.8 PV). A linear sandpack (length of 62.5 cm and diameter of 2″) was prepared and wrapped with thermal jacket to simulate several reservoir temperatures. It was filled by selected sand size to produce linear sandpack model with reasonable porosity (22%) and permeability (129–157 mD) values. The model was used to perform several displacements runs for waterflooding and nanocomposite polymer flooding. The results of the flood runs are analyzed using the water–oil relative permeability curves. The measurements of the solutions properties showed that the critical concentration of the used nanocomposite polymer in the solution is 2 g/L. Also, it was observed that the used nanocomposite polymer solution could withstand a salinity of 60,000 ppm. As a result of the flooding, it was found that the optimum economical slug size of the used nanocomposite polymer is 0.4 PV at reservoir temperature of 40 °C. The results indicated also that the used nanocomposite polymer could withstand a reservoir temperature of 90 °C. The water–oil relative permeability curves showed an enhancement of oil relative permeability and a decrease in the water relative permeability using nanocomposite polymer over waterflooding. The cost of the used nanocomposite polymer with a concentration of 2 g/L and slug size of 0.4 PV is 0.626 $ for each barrel of the incremental oil recovery. Based on the results of this work, it is clear that involving nanoparticles such as silica in the polymer matrix composition improves its properties, thermal and salinity resistivity. Such study is an original contribution to carry out successful nanocomposite polymer EOR projects.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5125
Author(s):  
Qiong Wang ◽  
Xiuwei Liu ◽  
Lixin Meng ◽  
Ruizhong Jiang ◽  
Haijun Fan

It is well acknowledged that due to the polymer component, the oil–water relative permeability curve in polymer flooding is different from the curve in waterflooding. As the viscoelastic properties and the trapping number are presented for modifying the oil–water relative permeability curve, the integration of these two factors for the convenience of simulation processes has become a key issue. In this paper, an interpolation factor Ω that depends on the normalized polymer concentration is firstly proposed for simplification. Then, the numerical calculations in the self-developed simulator are performed to discuss the effects of the interpolation factor on the well performances and the applications in field history matching. The results indicate that compared with the results of the commercial simulator, the simulation with the interpolation factor Ω could more accurately describe the effect of the injected polymer solution in controlling water production, and more efficiently simplify the combination of factors on relative permeability curves in polymer flooding. Additionally, for polymer flooding history matching, the interpolation factor Ω is set as an adjustment parameter based on core flooding results to dynamically consider the change of the relative permeability curves, and has been successfully applied in the water cut matching of the two wells in Y oilfield. This investigation provides an efficient method to evaluate the seepage behavior variation of polymer flooding.


1982 ◽  
Vol 22 (03) ◽  
pp. 371-381 ◽  
Author(s):  
Jude O. Amaefule ◽  
Lyman L. Handy

Abstract Relative permeabilities of systems containing low- tension additives are needed to develop mechanistic insights as to how injected aqueous chemicals affect fluid distribution and flow behavior. This paper presents results of an experimental investigation of the effect of low interfacial tensions (IFT's) on relative oil/water permeabilities of consolidated porous media. The steady- and unsteady-state displacement methods were used to generate relative permeability curves. Aqueous low-concentration surfactant systems were used to vary IFT levels. Empirical correlations were developed that relate the imbibition relative permeabilities, apparent viscosity, residual oil, and water saturations to the interfacial tension through the capillary number (Nc=v mu / sigma). They require two empirical, experimentally generated coefficients. The experimental results show that the relative oil/water permeabilities at any given saturation are affected substantially by IFT values lower than 10-1 mN/m. Relative oil/water permeabilities increased with decreasing IFT (increasing N ). The residual oil and residual water saturations (S, and S) decreased, while the total relative mobilities increased with decreasing IFT. The correlations predict values of relative oil/water permeability ratios, fractional flow, and residual saturations that agree with our experimental data. Apparent mobility design viscosities decreased exponentially with the capillary number. The results of this study can be used with simulators to predict process performance and efficiency for enhanced oil-recovery projects in which chemicals are considered for use either as waterflood or steamflood additives. However, the combined effect of decreased interfacial tension and increased temperature on relative permeabilities has not yet been studied. Introduction Oil displacement with an aqueous low-concentration surfactant solution is primarily dependent on the effectiveness of the solutions in reducing the IFT between the aqueous phase and the reservoir oil. With the attainment of ultralow IFT's (10 mN/m) and with adequate mobility controls, all the oil contacted can conceivably be displaced. When the interfacial tension is reduced to near zero values, the process tends to approach miscible displacement. However, most high-concentration soluble oil systems revert to immiscible displacement processes as the injected chemical traverses the reservoir. This is a result of the continual depletion of the surfactant by adsorption on the rock and by precipitation with divalent cations in the reservoir brine. The mechanism by which residual oil is mobilized by low-tension displacing fluids cannot be explained solely by the application of Darcy's law to both the aqueous and the oleic phases. On the other hand, in those reservoir regions in which water and oil are flowing concurrently as continuous phases, Darcy's law would be expected to apply and the relative permeability concept would be valid. If a low-tension aqueous phase were to invade a region in which the oil had not as yet been reduced to a discontinuous irreducible saturation, one would expect, also, that the relative permeability concept would be applicable. Under circumstances for which these conditions apply, relative permeabilities at low interfacial tensions would be required, The effect of IFT's on relative permeability curves has received limited treatment in the petroleum literature. Leverett reported a small but definite tendency for a water/oil system in unconsolidated rocks to exhibit 20 to 30% higher relative permeabilities if the IFT was decreased from 24 to 5 mN/m. Mungan studied interfacial effects on oil displacement in Teflons cores. The interfacial tension values varied from 5 to 40 mN/m. SPEJ P. 371^


Sign in / Sign up

Export Citation Format

Share Document