Hydraulic Fracturing to Successfully Exploit Depleted Gas Reserves: A Case History from the North Sea

2022 ◽  
Author(s):  
Mark Norris ◽  
Marc Langford ◽  
Charlotte Giraud ◽  
Reginald Stanley ◽  
Steve Ball

Abstract Hydraulic fracturing has been well established in the Southern North Sea (SNS) since the mid-1980s; however, it has typically been conducted as the final phase of development in new gas fields. One of these fields is Chiswick located in the Greater Markham area 90 miles offshore UK in 130 ft of water. Following an unsuccessful well repair of the multi-fractured horizontal well C4, it was decided to cost-effectively and expediently exploit the remaining pressure-depleted reserves near the toe via a single large fracture initiated from a deviated sidetrack wellbore designated C6. A deviated wellbore was chosen versus the original near-horizontal well to reduce well risk and costs and ultimately deliver an economic well. Several key challenges were identified, and mitigating measures were put in place. Modular formation dynamics tester data from the sidetrack open hole indicated the reservoir pressure gradient had depleted to 0.23 to 0.25 psi/ft, raising concerns about the ability of the well to unload the fluid volumes associated with a large fracture treatment. Wellbore deviation and azimuth with the associated potential for near-wellbore tortuosity would drive a typically short perforation interval (i.e., 3 ft). However, a compromise to mitigate convergent pressure loss in depletion was required, and the perforation interval was therefore set at 14 ft with provision made for robust step-down tests (SDT) and multi-mesh sand slugs. To further offset any near-well convergence pressure drop during cleanup, an aggressive tip screenout (TSO) proppant schedule, including a high concentration tail-in (12 PPA) with an aggressive breaker schedule, was executed to fully develop propped hydraulic width. Following formation breakdown and SDT to 40 bbl/min, the well went on near-instantaneous vacuum. Clearly, an extremely conductive feature had been created or contacted. However, upon use of a robust crosslinked gel formulation and 100-mesh sand, the bottomhole and positive surface pressure data allowed a suitable fracture design to be refined and placed with a large width, as evidenced by the extreme 2,309-psi net pressure development over that of the pad stage while placing 500,500 lbm of 16/30 resin-coated (RC) intermediate strength proppant (ISP) to 12 PPA. Although a lengthy nitrogen lift by coiled tubing (CT) was planned, the well cleanup response in fact allowed unaided hydrocarbon gas flow to surface within a short period. The well was then further beaned-up under well test conditions to a flow rate of approximately 26 MMscf/D under critical flowing conditions with a higher bottomhole flowing pressure than that of the original C4 well. Given the last producing rate of the original multiple fractured horizontal wellbore was 27 MMscf/D at a drawdown of 1,050 psi through two separate hydraulic fractures, then the outcome of this well was judged to be highly successful and at the limit of predrill expectations. This case history explains and details the rationale, methods, and techniques employed in well C6 to address the challenge of successful hydraulic fracture stimulation in a depleted formation. Challenges were addressed by combining a number of techniques, coupled with field experience, resulting in a highly productive well despite the relatively low reservoir pressure coupled with a limited time frame to plan and execute. These techniques are transferrable to other offshore gas fields in the region where reservoir depletion makes economic recovery difficult or indeed prohibitive.

2022 ◽  
Author(s):  
Josef R. Shaoul ◽  
Jason Park ◽  
Andrew Boucher ◽  
Inna Tkachuk ◽  
Cornelis Veeken ◽  
...  

Abstract The Saih Rawl gas condensate field has been producing for 20 years from multiple fractured vertical wells covering a very thick gross interval with varying reservoir permeability. After many years of production, the remaining reserves are mainly in the lowest permeability upper units. A pilot program using horizontal multi-frac wells was started in 2015, and five wells were drilled, stimulated and tested over a four-year period. The number of stages per horizontal well ranged from 6 to 14, but in all cases production was much less than expected based on the number of stages and the production from offset vertical wells producing from the same reservoir units with a single fracture. The scope of this paper is to describe the work that was performed to understand the reason for the lower than expected performance of the horizontal wells, how to improve the performance, and the implementation of those ideas in two additional horizontal wells completed in 2020. The study workflow was to perform an integrated analysis of fracturing, production and well test data, in order to history match all available data with a consistent reservoir description (permeability and fracture properties). Fracturing data included diagnostic injections (breakdown, step-rate test and minifrac) and main fracture treatments, where net pressure matching was performed. After closure analysis (ACA) was not possible in most cases due to low reservoir pressure and absence of downhole gauges. Post-fracture well test and production matching was performed using 3D reservoir simulation models including local grid refinement to capture fracture dimensions and conductivity. Based on simulation results, the effective propped fracture half-length seen in the post-frac production was extremely small, on the order of tens of meters, in some of the wells. In other wells, the effective fracture half-length was consistent with the created propped half-length, but the fracture conductivity was extremely small (finite conductivity fracture). The problems with the propped fractures appear to be related to a combination of poor proppant pack cleanup, low proppant concentration and small proppant diameter, compounded by low reservoir pressure which has a negative impact on proppant regained permeability after fracturing with crosslinked gel. Key conclusions from this study are that 1) using the same fracture design in a horizontal well with transverse fractures will not give the same result as in a vertical well in the same reservoir, 2) the effect of depletion on proppant pack cleanup in high temperature tight gas reservoirs appears to be very strong, requiring an adjustment in fracture design and proppant selection to achieve reasonable fracture conductivity, and 3) achieving sufficient effective propped length and height is key to economic production.


2014 ◽  
Vol 17 (02) ◽  
pp. 257-270 ◽  
Author(s):  
Laureano Gonzalez ◽  
Gaisoni Nasreldin ◽  
Jose Rivero ◽  
Pete Welsh ◽  
Roberto Aguilera

Summary Unconventional gas is stored in extensive areas known as basin-centered continuous-gas accumulations. Although the estimated worldwide figures differ significantly, the consensus among the studies relating to unconventional gas resources is that the volumes are gigantic. However, the low permeability in these types of reservoirs usually results in a very low recovery factor. To help unlock these resources, this paper presents a new and more accurate way of simulating multistage hydraulic fracturing in horizontal wells in three dimensions by use of single- and dual-porosity reservoir models. In this approach, the geometry (not necessarily symmetric) and orientation of the multiple hydraulic fractures are driven by the prevailing stress state in the drainage volume of the horizontal well. Once the hydraulic-fracturing job is accurately modeled in three dimensions, two-way geomechanical coupling is used to history match the produced gas from a horizontal well drilled in the Nikanassin naturally fractured tight gas formation of the Western Canada Sedimentary Basin (WCSB). Traditionally, the most widely used approaches have their roots in semianalytical calculations simplifying the fracturing system to a planar feature propagating symmetrically away from a line source of injection. In contrast, the computed results presented in this study show that the incorporation of geomechanical effects gives a more realistic representation of the orientation and geometry of hydraulic fractures. Reduction in permeability of the natural and hydraulic fractures because of pressure depletion results in more-realistic production predictions compared with the case in which geomechanical effects are ignored. The telling conclusion, in light of the computed results, is that the field of hydraulic fracturing provides an object lesson in the need for coupled 3D geomechanical approaches. The method presented in this paper will help to improve gas rates and recoveries from reservoirs with permeability values in the nanodarcy scale.


2003 ◽  
Vol 20 (1) ◽  
pp. 705-712 ◽  
Author(s):  
C. W. McCrone

abstractDavy, Bessemer, Beaufort and Brown are a series of small to moderate (30-200 BCF) dry gas fields, which span the southeastern corner of the UK Southern North Sea Rotliegend Play fairway. Davy was discovered in 1970; however, it was not until 1989 that Bessemer and subsequently Beaufort in 1991 were drilled. These fields were developed and brought on-stream by Amoco licence groups in 1995/96. More recently the Brown Field was discovered in October 1998 with first gas seven weeks later. The commercial viability of these relatively small accumulations is the result of technical advances across several fronts: 3D seismic imaging, horizontal well technology and minimum offshore facilities.In the Bessemer and Beaufort area, the Rotliegend Leman Sandstone Formation reservoir (250 ft) primarily consists of stacked aeolian dune sandstones of good reservoir quality (porosity 17%, permeability 10-1000mD). However, in the Davy and Brown area there is greater variation in the Rotliegend isopach (300-700 ft) and the nature of facies present e.g., aeolian dune, sabkha and playa lake.The fields are tied back from the Bessemer and Davy mono-tower platforms via 15 km and 43 km pipelines, respectively, to the compression facilities on the Indefatigable 23AT platform.


2021 ◽  
Author(s):  
Taras Sergeevich Yushchenko ◽  
Evgeniy Viktorovich Demin ◽  
Rinat Alfredovich Khabibullin ◽  
Konstantin Sergeevich Sorokin ◽  
Mikhail Viktorovich Khachaturyan ◽  
...  

Abstract Wells with extended horizontal wellbore (HW) drilling with multistage hydraulic fracturing (MHF) is necessary for commercial oil production from Bazhenov formation (Vashkevich et al., 2015; Strizhnev, 2019). Today the maximum HW length for Bazhenov formation wells is 1500 m (Strizhnev, 2019, Korobitsyn et al., 2020). In international practice the maximum HW length for shale oil production is around 3000-400 m (Rodionova et al., 2019). Pump Down Perforator (PDP) technology is used for MHF: a liner is run in hole and cemented, then perforation and hydraulic fracturing (HF) are successively performed by stages at equal distances from the end to the beginning of HW to create a branched system of fractures in Bazhenov formation. Performed HF stages are isolated with special packer plugs (insoluble blind, dissolvable blind, insoluble with seat for dissolvable ball or dissolvable with seat for dissolvable ball)) (Mingazov et al., 2020). Consequently, the fluid inflow into the well is occurred along whole HW and the flow rate increases from monotonically from the end to the beginning of HW and has maximum value at last HF stage. The numbers of HF stages are about 24-30 (number of perforating clusters - 100) at one well in Russia and 50 in the world (Alzahabi et al., 2019). One of important parameter during HF is the speed of HF fluid injection into the formation. Tubing outer diameters 114-140 mm. are used in HW to increase the injection rate and reduce friction losses in the well. The flow rate of HF fluid in this case reach to 14-16 m3/min (Ogneva et al., 2020; Astafiev et al., 2015). Monobore wells construction is planned to use with outer diameter 140 mm. A stinger is used as sealing element between tubing and liner to minimizing risk of HF liquids leaks into the annulus (Astafiev et al., 2015). As a result, the inner well diameter from wellhead to bottomhole is around constant in the process of MHF. The pressure in the hydraulic fractures and the collector near fractures after MHF is highly exceeded the initial reservoir pressure. Hence wellhead pressure after MHF in water filled well is about 100-150 bar (Jing Wang et al., 2021). This fact significantly limits downhole well operations because of requires killing (tubing change, let down ESP, etc.). These works are required heavy well killing fluid because of high overpressure. It is undesirable because of it can reduce the fracture conductivity, worse well bottom zone properties and reduce well productivity. Therefore, the well is working at flowing mode in initial period usually until the reservoir pressure in the drainage area is decreased at the hydrostatic level or below (Jing Wang et al., 2021). After that the well can be killing using technical water with a density of 1.01 – 1.07 g/sm3 (the use of well-killing fluid with a density higher than 1.1 g/sm3 is undesirable). The possibility of well flowing working depends on properties of collector and reservoir fluid: High gas-oil ratio (GOR) and reservoir conductivity help well flowing until reservoir pressure drop off hydrostatic pressure.


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. WB119-WB126 ◽  
Author(s):  
Lanfang He ◽  
Xiumian Hu ◽  
Ligui Xu ◽  
Zhanxiang He ◽  
Weili Li

Hydraulic fracturing is widely used for initiating and subsequently propagating fractures in reservoir strata by means of a pressurized fluid to release oil and gas or to store industry waste. Downhole or surface microseismic monitoring is commonly used to characterize the hydraulically induced fractures. However, in some cases, downhole microseismic monitoring can be difficult due to the limitation imposed by boreholes. Surface microseismic monitoring often faces difficulties acquiring high signal-to-noise ratio data because of the on-site noise from hydraulic fracturing process. Research and field observations indicate that injecting conductive slurry or water into a strata may generate distinct time-lapse electromagnetic anomalies between pre- and posthydraulic fracturing. These anomalies provide a means for characterizing the hydraulic fracturing using time-lapse electromagnetic methods. We examined the time-lapse variation over an hour, one day, one month, and two years of observed audio-magnetotellurics (AMT) resistivity and the 1D and 3D AMT modeling result of the variation pre- and posthydraulic fracturing. There is also a successful case history of applying the time-lapse AMT to map hydraulic fractures. Observed data indicate that the variation of AMT resistivity is normally less than 6% apart from the data of the dead band and some noisy data. Modeling results show the variation pre- and posthydraulic fracturing is larger than 30% at the frequency point lower than 100 Hz. The case history indicates that time-lapse magnetotelluric monitoring may form a new way to characterize the hydraulic fracture.


Author(s):  
Helio Souto

<p>Since the 1960s, because of the relevance to the oil industry, the numerical simulation of hydrocarbon reservoirs has received special attention and has been the subject of extensive studies. The main goal of computational modeling and the use of numerical methods for reservoir simulation is to allow better placement and control of wells, so that there is a optimized oil recovery. In this work, production of hydraulically fractured horizontal wells in light tight oil reservoirs will be studied. In this case, fractures do not form a continuous conductive network and can communicate hydraulically with only the horizontal producer well. In order to do that, a simulator for three-dimensional oil flow in reservoirs, suitable for applications in the field scale, already developed, using the Cartesian coordinate system and a finite difference approach, will be applied for the study of hydraulically fractured horizontal wells. Originally, this simulator and its grid refinement tools had been used only on the simulation of naturally fractured reservoirs. The nonlinear partial differential equation resulting from physical-mathematical modeling, written in terms of pressure, will be solved numerically after discretization and linearization using the Preconditioned Conjugate Gradient method. The main objective is to study the combined effects of hydraulic fractures and horizontal well on the wellbore pressure profile, considering different light tight oil production scenarios. Numerical simulations displayed the influence of important parameters on the well-reservoir system in study, such as fracture permeability and matrix porosity. A study of this type is relevant on the discussion of reservoir production strategies, helping on the decisions about a hydraulic fracturing operation in order to obtain economic viability for the hydrocarbons recovery project.</p><p><strong>Keywords</strong>: reservoir simulation, light tight oil, horizontal well, hydraulic fracturing, nite diferences method.</p>


2014 ◽  
Author(s):  
Marc Edmund Langford ◽  
George Douglas Westera ◽  
Brian Holland ◽  
Bogdan Bocaneala ◽  
Mark Robert Norris

Sign in / Sign up

Export Citation Format

Share Document